No Arabic abstract
This work is part of a series of studies focusing on the environment and the properties of the X-ray selected active galactic nuclei (AGN) population from the XXL survey. The present survey, given its large area, continuity, extensive multiwavelength coverage, and large-scale structure information, is ideal for this kind of study. Here, we focus on the XXL-South (XXL-S) field. Our main aim is to study the environment of the various types of X-ray selected AGN and investigate its possible role in AGN triggering and evolution. We studied the large-scale (>1 Mpc) environment up to redshift z=1 using the nearest neighbour distance method to compare various pairs of AGN types. We also investigated the small-scale environment (<0.4 Mpc) by calculating the local overdensities of optical galaxies. In addition, we built a catalogue of AGN concentrations with two or more members using the hierarchical clustering method and we correlated them with the X-ray galaxy clusters detected in the XXL survey. It is found that radio detected X-ray sources are more obscured than non-radio ones, though not all radio sources are obscured AGN. We did not find any significant differences in the large-scale clustering between luminous and faint X-ray AGN, or between obscured and unobscured ones, or between radio and non-radio sources. At local scales (<0.4 Mpc), AGN typically reside in overdense regions, compared to non-AGN; however, no differences were found between the various types of AGN. A majority of AGN concentrations with two or more members are found in the neighbourhood of X-ray galaxy clusters within <25-45 Mpc. Our results suggest that X-ray AGN are typically located in supercluster filaments, but they are also found in over- and underdense regions.
Aims: We investigate the properties of the polarised radio population in the central 6.5 deg$^{2}$ of the XXL-South field observed at 2.1 GHz using the Australia Telescope Compact Array (ATCA) in 81 pointings with a synthesised beam of FWHM 5.2. We also investigate the ATCAs susceptibility to polarisation leakage. Methods: We performed a survey of a 5.6 deg$^{2}$ subregion and calculated the number density of polarised sources. We derived the total and polarised spectral indices, in addition to comparing our source positions with those of X-ray-detected clusters. We measured the polarisation of sources in multiple pointings to examine leakage in the ATCA. Results: We find 39 polarised sources, involving 50 polarised source components, above a polarised flux density limit of 0.2 mJy at 1.332 GHz. The number density of polarised source components is comparable with recent surveys, although there is an indication of an excess at $sim1$ mJy. We find that those sources coincident with X-ray clusters are consistent in their properties with regard to the general population. In terms of the ATCA leakage response, we find that ATCA mosaics with beam separation of $lesssim 2/3$ of the primary beam FWHM have off-axis linear polarisation leakage $lesssim 1.4$ % at 1.332 GHz.
This paper presents a survey of X-ray selected active galactic nuclei (AGN) with optical spectroscopic follow-up in a $sim 18, rm{deg^2}$ area of the equatorial XMM-XXL north field. A sample of 8445 point-like X-ray sources detected by XMM-Newton above a limiting flux of $F_{rm 0.5-10, keV} > 10^{-15} rm,erg, cm^{-2}, s^{-1}$ was matched to optical (SDSS) and infrared (WISE) counterparts. We followed up 3042 sources brighter than $r=22.5$ mag with the SDSS BOSS spectrograph. The spectra yielded a reliable redshift measurement for 2578 AGN in the redshift range $z=0.02-5.0$, with $0.5-2rm, keV$ luminosities ranging from $10^{39}-10^{46}rm,erg,s^{-1}$. This is currently the largest published spectroscopic sample of X-ray selected AGN in a contiguous area. The BOSS spectra of AGN candidates show a bimodal distribution of optical line widths allowing a separation between broad- and narrow-emission line AGN. The former dominate our sample (70 per cent) due to the relatively bright X-ray flux limit and the optical BOSS magnitude limit. We classify the narrow emission line objects (22 per cent of full sample) using standard BPT diagnostics: the majority have line ratios indicating the dominant source of ionization is the AGN. A small number (8 per cent of full sample) exhibit the typical narrow line ratios of star-forming galaxies, or only have absorption lines in their spectra. We term the latter two classes elusive AGN. We also compare X-ray, optical and infrared color AGN selections in this field. X-ray observations reveal, the largest number of AGN. The overlap between the selections, which is a strong function of the imaging depth in a given band, is also remarkably small. We show using spectral stacking that a large fraction of the X-ray AGN would not be selectable via optical or IR colours due to host galaxy contamination.
The combination of optical and mid-infrared (MIR) photometry has been extensively used to select red active galactic nuclei (AGNs). Our aim is to explore the obscuration properties of these red AGNs with both X-ray spectroscopy and spectral energy distributions (SEDs). In this study, we re-visit the relation between optical/MIR extinction and X-ray absorption. We use IR selection criteria, specifically the $W1$ and $W2$ WISE bands, to identify 4798 AGNs in the $it{XMM-XXL}$ area ($sim 25$deg$^2$). Application of optical/MIR colours ($r- W2 > 6$) reveals 561 red AGNs (14$%$). Of these, 47 have available X-ray spectra with at least 50 net (background-subtracted) counts per detector. For these sources, we construct SEDs from the optical to the MIR using the CIGALE code. The SED fitting shows that 44 of these latter 47 sources present clear signs of obscuration based on the AGN emission and the estimated inclination angle. Fitting the SED also reveals ten systems ($sim20%$) which are dominated by the galaxy. In these cases, the red colours are attributed to the host galaxy rather than AGN absorption. Excluding these ten systems from our sample and applying X-ray spectral fitting analysis shows that up to $76%$ (28/37) of the IR red AGNs present signs of X-ray absorption. Thus, there are nine sources ($sim20%$ of the sample) that although optically red, are not substantially X-ray absorbed. Approximately $50%$ of these sources present broad emission lines in their optical spectra. We suggest that the reason for this apparent discrepancy is that the r-W2 criterion is sensitive to smaller amounts of obscuration relative to the X-ray spectroscopy. In conclusion, it appears that the majority of red AGNs present considerable obscuration levels as shown by their SEDs. Their X-ray absorption is moderate with a mean of $rm N_H sim 10^{22}, rm{cm^{-2}}$.
Context. The XMM-XXL survey uses observations from XMM-Newton to detect clusters of galaxies over a wide range in mass and redshift. The moderate PSF of XMM-Newton means that point sources within or projected onto a cluster may not be separated from the cluster emission, leading to enhanced luminosities and affecting the selection function of the cluster survey. Aims. We present the results of short Chandra observations of 21 galaxy clusters and cluster candidates at redshifts z $>$ 1 detected in the XMM-XXL survey in X-rays or selected in the optical and infra-red. Methods. With the superior angular resolution of Chandra we investigate whether there are any point sources within the cluster region that were not detected by the XMM-XXL analysis pipeline, and whether any point sources were misclassified as distant clusters. Results. Of the 14 X-ray selected clusters, nine are free from significant point source contamination, either having no previously unresolved sources detected by Chandra, or with less than about 10% of the reported XXL cluster flux being resolved into point sources. Of the other five sources, one is significantly contaminated by previously unresolved AGN, and four appear to be AGN misclassified as clusters. All but one of these cases are in the subset of less secure X-ray selected cluster detections and the false positive rate is consistent with that expected from the XXL selection function modelling. We also considered a further seven optically-selected cluster candidates associated with faint XXL sources that were not classed as clusters. By decontaminating and vetting these distant clusters, we provide a pure sample of clusters at redshift z $>$ 1 for deeper follow-up observations, and demonstrate the utility of using Chandra snapshots to test for AGN in surveys with high sensitivity but poor angular resolution.
Context. Scaling relations between cluster properties embody the formation and evolution of cosmic structure. Intrinsic scatters and correlations between X-ray properties are determined from merger history, baryonic processes, and dynamical state. Aims. We look for an unbiased measurement of the scatter covariance matrix between the three main X-ray observable quantities attainable in large X-ray surveys -- temperature, luminosity, and gas mass. This also gives us the cluster property with the lowest conditional intrinsic scatter at fixed mass. Methods. Intrinsic scatters and correlations can be measured under the assumption that the observable properties of the intra-cluster medium hosted in clusters are log-normally distributed around power-law scaling relations. The proposed method is self-consistent, based on minimal assumptions, and requires neither the external calibration by weak lensing, dynamical, or hydrostatic masses nor the knowledge of the mass completeness. Results. We analyzed the 100 brightest clusters detected in the XXL Survey and their X-ray properties measured within a fixed radius of 300 kpc. The gas mass is the less scattered proxy (~8%). The temperature (~20%) is intrinsically less scattered than the luminosity (~30%) but it is measured with a larger observational uncertainty. We found some evidence that gas mass, temperature and luminosity are positively correlated. Time-evolutions are in agreement with the self-similar scenario, but the luminosity-temperature and the gas mass-temperature relations are steeper. Conclusions. Positive correlations between X-ray properties can be determined by the dynamical state and the merger history of the halos. The slopes of the scaling relations are affected by radiative processes.