We study the polynomial entropy of the wandering part of any invertible dynamical system on a compact metric space. As an application we compute the polynomial entropy of Brouwer homeomorphisms (fixed point free orientation preserving homeomorphisms of the plane), and show in particular that it takes every real value greater or equal to 2.
We use the homotopy Brouwer theory of Handel to define a Poincar{e} index between two orbits for an orientation preserving fixed point free homeomorphism of the plane. Furthermore, we prove that this index is almost additive.
Homotopy Brouwer theory is a tool to study the dynamics of surface homeomorphisms. We introduce and illustrate the main objects of homotopy Brouwer theory, and provide a proof of Handels fixed point theorem. These are the notes of a mini-course held during the workshop Superficies en Montevideo in March 2012.
A group $G$ is said to be periodic if for any $gin G$ there exists a positive integer $n$ with $g^n=id$. We prove that a finitely generated periodic group of homeomorphisms on the 2-torus that preserves a measure $mu$ is finite. Moreover if the group consists in homeomorphisms isotopic to the identity, then it is abelian and acts freely on $mathbb{T}^2$. In the Appendix, we show that every finitely generated 2-group of toral homeomorphisms is finite.
We construct different types of quasiperiodically forced circle homeomorphisms with transitive but non-minimal dynamics. Concerning the recent Poincare-like classification for this class of maps of Jaeger-Stark, we demonstrate that transitive but non-minimal behaviour can occur in each of the different cases. This closes one of the last gaps in the topological classification. Actually, we are able to get some transitive quasiperiodically forced circle homeomorphisms with rather complicated minimal sets. For example, we show that, in some of the examples we construct, the unique minimal set is a Cantor set and its intersection with each vertical fibre is uncountable and nowhere dense (but may contain isolated points). We also prove that minimal sets of the later kind cannot occur when the dynamics are given by the projective action of a quasiperiodic SL(2,R)-cocycle. More precisely, we show that, for a quasiperiodic SL(2,R)-cocycle, any minimal strict subset of the torus either is a union of finitely many continuous curves, or contains at most two points on generic fibres.
A group $Gamma$ is said to be periodic if for any $g$ in $Gamma$ there is a positive integer $n$ with $g^n=id$. We first prove that a finitely generated periodic group acting on the 2-sphere $SS^2$ by $C^1$-diffeomorphisms with a finite orbit, is finite and conjugate to a subgroup of $mathrm{O}(3,R)$ and we use it for proving that a finitely generated periodic group of spherical diffeomorphisms with even bounded orders is finite. Finally, we show that a finitely generated periodic group of homeomorphisms of any orientable compact surface other than the 2-sphere or the 2-torus (which is the purpose of a previous paper of the authors) is finite.