Do you want to publish a course? Click here

Bragg gravity-gradiometer using the $^1$S$_0$-$^3$P$_1$ intercombination transition of $^{88}$Sr

69   0   0.0 ( 0 )
 Added by Nicola Poli Dr.
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present a gradiometer based on matter-wave interference of alkaline-earth-metal atoms, namely $^{88}$Sr. The coherent manipulation of the atomic external degrees of freedom is obtained by large-momentum-transfer Bragg diffraction, driven by laser fields detuned away from the narrow $^1$S$_0$-$^3$P$_1$ intercombination transition. We use a well-controlled artificial gradient, realized by changing the relative frequencies of the Bragg pulses during the interferometer sequence, in order to characterize the sensitivity of the gradiometer. The sensitivity reaches $1.5 times 10^{-5}$ s$^{-2}$ for an interferometer time of 20 ms, limited only by geometrical constraints. We observed extremely low sensitivity of the gradiometric phase to magnetic field gradients, approaching a value 10$^{5}$ times lower than the sensitivity of alkali-atom based gradiometers. An efficient double-launch technique employing accelerated red vertical lattices from a single magneto-optical trap cloud is also demonstrated. These results highlight strontium as an ideal candidate for precision measurements of gravity gradients, with potential application in future precision tests of fundamental physics.



rate research

Read More

We report the first laser spectroscopy of the $^1$S$_0$ to $^3$D$_1$ clock transition in $^{175}$Lu$^+$. Clock operation is demonstrated on three pairs of Zeeman transitions, one pair from each hyperfine manifold of the $^3$D$_1$ term. We measure the hyperfine intervals of the $^3$D$_1$ to 10 ppb uncertainty and infer the optical frequency averaged over the three hyperfine transitions to be 353.639 915 952 2 (6) THz. The lifetime of the $^3$D$_1$ state is inferred to be $174^{+23}_{-32}$ hours from the M1 coupling strength.
Transition frequencies were determined for transitions in Ra in an atomic beam and for reference lines in Te$_2$ molecules in a vapor cell. The absolute frequencies were calibrated against a GPS stabilized Rb-clock by means of an optical frequency comb. The 7s$^2,^1$S$_0$(F = 1/2)-7s7p$,^1$P$_1$(F = 3/2) transition in $^{225}$Ra was determined to be $621,042,124(2),$MHz. The measurements provide input for designing efficient and robust laser cooling of Ra atoms in preparation of a search for a permanent electric dipole moment in Ra isotopes.
Black-body radiation (BBR) shifts of $^3!P_0-^1!S_0$ clock transition in divalent atoms Cd and Zn are evaluated using accurate relativistic many-body techniques of atomic structure. Static polarizabilities of the clock levels and relevant electric-dipole matrix elements are computed. We also present a comparative overview of the BBR shifts in optical clocks based on neutral divalent atoms trapped in optical lattices.
We determine the frequency of the ultranarrow $^{87}text{Sr}$ ${^{1}text{S}_{0}} - {^{3}text{P}_{2}}$ transition by spectroscopy of an ultracold gas. This transition is referenced to four molecular iodine lines that are observed by Doppler-free saturation spectroscopy of hot iodine vapor. The frequency differences between the Sr and the I$_2$ transitions are measured with an uncertainty of 250 kHz. The absolute frequency of the $^{87}text{Sr}$ ${^{1}text{S}_{0}} - {^{3}text{P}_{2}}$ ($text{F}=7/2$) transition is 446648775(30) MHz and limited in accuracy by the iodine reference. This work prepares the use of the Sr ${^{1}text{S}_{0}} - {^{3}text{P}_{2}}$ transition for quantum simulation and computation.
We report an observation of the weak $6^{1}$S$_{0}$-$6^3$P$_0$ transition in $^{171,173}$Yb as an important step to establish Yb as a primary candidate for future optical frequency standards, and to open up a new approach for qubits using the $^{1}$S$_{0}$ and $^3$P$_0$ states of Yb atoms in an optical lattice.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا