No Arabic abstract
Transition frequencies were determined for transitions in Ra in an atomic beam and for reference lines in Te$_2$ molecules in a vapor cell. The absolute frequencies were calibrated against a GPS stabilized Rb-clock by means of an optical frequency comb. The 7s$^2,^1$S$_0$(F = 1/2)-7s7p$,^1$P$_1$(F = 3/2) transition in $^{225}$Ra was determined to be $621,042,124(2),$MHz. The measurements provide input for designing efficient and robust laser cooling of Ra atoms in preparation of a search for a permanent electric dipole moment in Ra isotopes.
We present a gradiometer based on matter-wave interference of alkaline-earth-metal atoms, namely $^{88}$Sr. The coherent manipulation of the atomic external degrees of freedom is obtained by large-momentum-transfer Bragg diffraction, driven by laser fields detuned away from the narrow $^1$S$_0$-$^3$P$_1$ intercombination transition. We use a well-controlled artificial gradient, realized by changing the relative frequencies of the Bragg pulses during the interferometer sequence, in order to characterize the sensitivity of the gradiometer. The sensitivity reaches $1.5 times 10^{-5}$ s$^{-2}$ for an interferometer time of 20 ms, limited only by geometrical constraints. We observed extremely low sensitivity of the gradiometric phase to magnetic field gradients, approaching a value 10$^{5}$ times lower than the sensitivity of alkali-atom based gradiometers. An efficient double-launch technique employing accelerated red vertical lattices from a single magneto-optical trap cloud is also demonstrated. These results highlight strontium as an ideal candidate for precision measurements of gravity gradients, with potential application in future precision tests of fundamental physics.
We report the first laser spectroscopy of the $^1$S$_0$ to $^3$D$_1$ clock transition in $^{175}$Lu$^+$. Clock operation is demonstrated on three pairs of Zeeman transitions, one pair from each hyperfine manifold of the $^3$D$_1$ term. We measure the hyperfine intervals of the $^3$D$_1$ to 10 ppb uncertainty and infer the optical frequency averaged over the three hyperfine transitions to be 353.639 915 952 2 (6) THz. The lifetime of the $^3$D$_1$ state is inferred to be $174^{+23}_{-32}$ hours from the M1 coupling strength.
Black-body radiation (BBR) shifts of $^3!P_0-^1!S_0$ clock transition in divalent atoms Cd and Zn are evaluated using accurate relativistic many-body techniques of atomic structure. Static polarizabilities of the clock levels and relevant electric-dipole matrix elements are computed. We also present a comparative overview of the BBR shifts in optical clocks based on neutral divalent atoms trapped in optical lattices.
We measured the absolute frequency of the optical clock transition 1S0 (F = 1/2) - 3P0 (F = 1/2) of 171Yb atoms confined in a one-dimensional optical lattice and it was determined to be 518 295 836 590 863.5(8.1) Hz. The frequency was measured against Terrestrial Time (TT; the SI second on the geoid) by using an optical frequency comb of which the frequency was phase-locked to an H-maser as a flywheel oscillator traceable to TT. The magic wavelength was also measured as 394 798.48(79) GHz. The results are in good agreement with two previous measurements of other institutes within the specified uncertainty of this work.
We determine the frequency of the ultranarrow $^{87}text{Sr}$ ${^{1}text{S}_{0}} - {^{3}text{P}_{2}}$ transition by spectroscopy of an ultracold gas. This transition is referenced to four molecular iodine lines that are observed by Doppler-free saturation spectroscopy of hot iodine vapor. The frequency differences between the Sr and the I$_2$ transitions are measured with an uncertainty of 250 kHz. The absolute frequency of the $^{87}text{Sr}$ ${^{1}text{S}_{0}} - {^{3}text{P}_{2}}$ ($text{F}=7/2$) transition is 446648775(30) MHz and limited in accuracy by the iodine reference. This work prepares the use of the Sr ${^{1}text{S}_{0}} - {^{3}text{P}_{2}}$ transition for quantum simulation and computation.