Do you want to publish a course? Click here

Sequential fission of highly excited compound nuclei in a 4D Langevin approach

83   0   0.0 ( 0 )
 Added by Diego Gruyer
 Publication date 2017
  fields
and research's language is English




Ask ChatGPT about the research

In highly dissipative collisions between heavy ions, the optimal conditions to investigate different de-excitation channels of hot nuclei such as evaporation, fission or multifragmentation are well known. One crucial issue remains the excitation energy region where fission gives way to multifragmentation. In this paper, the onset of multi-fragment exit channels is investigated in terms of sequential fission. For the first time, the dynamical approach based on solving Langevin transport equations in multidimensional collective coordinate space is used to follow the de-excitation of highly excited (up to E* =223-656 MeV) 248Rf compound nuclei. The sequential fission model we propose contains two steps: (1) time evolution of the compound nucleus up to either scission or residue formation, followed by (2) dynamical calculations of each primary fragment separately. This procedure allows to obtain from one to four cold fragments correlated with the light particles emitted during the de-excitation process. Experimental data measured with the INDRA detector for the 129Xe+ natSn reaction at beam energies 8, 12 and 15 MeV/nucleon provide strong constraints for this sequential fission scenario.



rate research

Read More

83 - S.E.A. Orrigo 2006
Fano-resonances are investigated as a new continuum excitation mode in exotic nuclei. By theoretical model calculations we show that the coupling of a single particle elastic channel to closed core-excited channels leads to sharp resonances in the low-energy continuum. A signature for such bound states embedded in the continuum (BSEC) are characteristic interference effects leading to asymmetric line shapes. Following the quasiparticle-core coupling model we consider the coupling of 1-QP (one-quasiparticle) and 3-QP components and find a number of long-living resonance structures close to the particle threshold. Results for 15C are compared with experimental data, showing that the experimentally observed spectral distribution and the interference pattern are in qualitative agreement with a BSEC interpretation.
Fission of $^{180}$Hg produces mass asymmetric fragments which are expected to be influenced by deformed shell-effects at N=56 in the heavy fragment and Z=34 in the light fragment [G. Scamps and C. Simenel, arXiv:1904.01275 (2019)]. To investigate both shell-effects and to determine which one has the main influence on the asymmetry in the region of the $^{180}$Hg, we produce a systematic of Constraint-Hartree-Fock calculations in nuclei with similar N/Z ratio than the $^{178}$Pt. It is found that N=56 determines the asymmetry of systems in this region of the nuclear chart.
We present the schematic calculations within the Langevin approach in order to investigate the dependence of fission width on the memory time and the excitation energy at low temperatures where the quantum fluctuations play an important role. For this we consider the simple one-dimensional case with the potential energy given by two parabolic potentials (Kramers potential). For friction and the mass parameters we use the deformation independent values fitted to the results obtained earlier within the microscopic linear response theory. We have found out that at small excitation energies (comparable with the fission barrier height) the memory effects in the friction and random force acts on the fission width in opposite direction. The total effect is not so large, but still quite noticeable (depending on the value of the relaxation time). The use of effective temperature in the diffusion coefficient turns out to be much more important compared with the memory effects. The calculated fission width at very low excitation energies is unrealistically too big.
Experimental studies of fission induced in relativistic nuclear collisions show a systematic enhancement of the excitation energy of the primary fragments by a factor of ~ 2, before their decay by fission and other secondary fragments. Although it is widely accepted that by doubling the energies of the single-particle states may yield a better agreement with fission data, it does not prove fully successful, since it is not able to explain yields for light and intermediate mass fragments. State-of-the-art calculations are successful to describe the overall shape of the mass distribution of fragments, but fail within a factor of 2-10 for a large number of individual yields. Here, we present a novel approach that provides an account of the additional excitation of primary fragments due to final state interaction with the target. Our method is applied to the 238U + 208Pb reaction at 1 GeV/nucleon (and is applicable to other energies), an archetype case of fission studies with relativistic heavy ions, where we find that the large probability of energy absorption through final state excitation of giant resonances in the fragments can substantially modify the isotopic distribution of final fragments in a better agreement with data. Finally, we demonstrate that large angular momentum transfers to the projectile and to the primary fragments via the same mechanism imply the need of more elaborate theoretical methods than the presently existing ones.
Fission of atomic nuclei often produces mass asymmetric fragments. However, the origin of this asymmetry was believed to be different in actinides and in the sub-lead region [A. Andreyev {it et al.}, Phys. Rev. Lett. {bf 105}, 252502 (2010)]. It has recently been argued that quantum shell effects stabilising pear shapes of the fission fragments could explain the observed asymmetries in fission of actinides[G. Scamps and C. Simenel, Nature {bf 564}, 382 (2018)]. This interpretation is tested in the sub-lead region using microscopic mean-field calculations of fission based on the Hartree-Fock approach with BCS pairing correlations. The evolution of the number of protons and neutrons in asymmetric fragments of mercury isotope fissions is interpreted in terms of deformed shell gaps in the fragments. A new method is proposed to investigate the dominant shell effects in the pre-fragments at scission. We conclude that the mechanisms responsible for asymmetric fissions in the sub-lead region are the same as in the actinide region, which is a strong indication of their universality.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا