Do you want to publish a course? Click here

Indecomposable symplectic $k(C_2times C_2)$--modules and their quadratic forms

84   0   0.0 ( 0 )
 Added by John Murray
 Publication date 2017
  fields
and research's language is English




Ask ChatGPT about the research

For the Klein-Four Group $G$ and a perfect field $k$ of characteristic two we determine all indecomposable symplectic $kG$-modules, that is, $kG$-modules with a symplectic, $G$-invariant form which do not decompose into smaller such modules, and classify them up to isometry. Also we determine all quadratic forms that have one of the above symplectic forms as their associated bilinear form and describe their isometry classes.



rate research

Read More

109 - Rod Gow , John Murray 2018
Let $P$ be a principal indecomposable module of a finite group $G$ in characteristic $2$ and let $varphi$ be the Brauer character of the corresponding simple $G$-module. We show that $P$ affords a non-degenerate $G$-invariant quadratic form if and only if there are involutions $s,tin G$ such that $st$ has odd order and $varphi(st)/2$ is not an algebraic integer. We then show that the number of isomorphism classes of quadratic principal indecomposable $G$-modules is equal to the number of strongly real conjugacy classes of odd order elements of $G$.
146 - John Murray 2018
We determine the quadratic type of the 2-modular principal indecomposable modules of the double covers of alternating groups.
Let $alpha$ be a composition of $n$ and $sigma$ a permutation in $mathfrak{S}_{ell(alpha)}$. This paper concerns the projective covers of $H_n(0)$-modules $mathcal{V}_alpha$, $X_alpha$ and $mathbf{S}^sigma_{alpha}$, which categorify the dual immaculate quasisymmetric function, the extended Schur function, and the quasisymmetric Schur function when $sigma$ is the identity, respectively. First, we show that the projective cover of $mathcal{V}_alpha$ is the projective indecomposable module $mathbf{P}_alpha$ due to Norton, and $X_alpha$ and the $phi$-twist of the canonical submodule $mathbf{S}^{sigma}_{beta,C}$ of $mathbf{S}^sigma_{beta}$ for $(beta,sigma)$s satisfying suitable conditions appear as $H_n(0)$-homomorphic images of $mathcal{V}_alpha$. Second, we introduce a combinatorial model for the $phi$-twist of $mathbf{S}^sigma_{alpha}$ and derive a series of surjections starting from $mathbf{P}_alpha$ to the $phi$-twist of $mathbf{S}^{mathrm{id}}_{alpha,C}$. Finally, we construct the projective cover of every indecomposable direct summand $mathbf{S}^sigma_{alpha, E}$ of $mathbf{S}^sigma_{alpha}$. As a byproduct, we give a characterization of triples $(sigma, alpha, E)$ such that the projective cover of $mathbf{S}^sigma_{alpha, E}$ is indecomposable.
In this paper, we study the tensor structure of category of finite dimensional representations of Drinfeld quantum doubles $D(H_n(q))$ of Taft Hopf algebras $H_n(q)$. Tensor product decomposition rules for all finite dimensional indecomposable modules are explicitly given.
We examine in detail the Jacobi-Trudi characters over the ortho-symplectic Lie superalgebras spo(2|2m+1) and spo(2n|3). We furthermore relate them to Serganovas notion of Euler characters.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا