Do you want to publish a course? Click here

Frustrated antiferromagnetic honeycomb-tunnel-like lattice CuRE2Ge2O8 (RE=Pr, Nd, Sm, and Eu)

87   0   0.0 ( 0 )
 Added by Hwanbeom Cho
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

New frustrated antiferromagnetic compounds CuRE2Ge2O8 (RE=Pr, Nd, Sm, Eu) have been investigated using high-resolution x-ray diffraction, magnetic and heat capacity measurements. These systems show different magnetic lattices depending on rare-earth element. The nonmagnetic Eu compound is a S=1/2 two-dimensional triangular antiferromagnetic lattice oriented in the ac plane with geometrical frustration. On the other hand, the Pr, Nd, and Sm compounds show a three-dimensional honeycomb-tunnel-like lattice made of RE^3+ running along the a axis with the characteristic behavior of frustrated antiferromagnets.

rate research

Read More

132 - K. Berggold , T. Lorenz , J. Baier 2005
We have studied the thermal conductivity $kappa$ on single crystalline samples of the antiferromagnetic monolayer cuprates R$_2$CuO$_4$ with R = La, Pr, Nd, Sm, Eu, and Gd. For a heat current within the CuO$_2$ planes, i.e. for $kappa_{ab}$ we find high-temperature anomalies around 250 K in all samples. In contrast, the thermal conductivity $kappa_c$ perpendicular to the CuO$_2$ planes, which we measured for R = La, Pr, and Gd, shows a conventional temperature dependence as expected for a purely phononic thermal conductivity. This qualitative anisotropy of $kappa_i$ and the anomalous temperature dependence of $kappa_{ab}$ give evidence for a significant magnetic contribution $kappa_{mag}$ to the heat transport within the CuO$_2$ planes. Our results suggest, that a large magnetic contribution to the heat current is a common feature of single-layer cuprates. We find that $kappa_{mag}$ is hardly affected by structural instabilities, whereas already weak charge carrier doping causes a strong suppression of $kappa_{mag}$.
We have investigated the temperature dependence of the magnetic susceptibility $chi(T)$ of rare-earth cobaltites RCoO$_3$ (R= La, Pr, Nd, Sm, Eu) in the temperature range $4.2-300$ K and also the influence of hydrostatic pressure up to 2 kbar on their susceptibility at fixed temperatures $T=78 $ and 300 K. The specific dependence $chi(T)$ observed in LaCoO$_3$ and the anomalously large pressure effect (d ln $chi$/d$Psim -100$ Mbar$^{-1}$ for $T = 78$ K) are analyzed in the framework of a two-level model with energy levels difference $Delta$. The ground state of the system is assumed to be nonmagnetic with the zero spin of Co$^{3+}$ ions, and magnetism at a finite temperature is determined by the excited magnetic spin state. The results of the analysis, supplemented by theoretical calculations of the electronic structure of LaCoO$_3$, indicate a significant increase in $Delta$ with a decrease in the unit cell volume under the hydrostatic pressure. In the series of RCoO$_3$ (R= Pr, Nd, Sm, Eu) compounds, the volume of crystal cell decreases monotonically due to a decrease in the radius of R$^{3+}$ ions. This leads to an increase in the relative energy $Delta$ of the excited state (the chemical pressure effect), which manifests itself in a decrease in the contribution of cobalt ions to the magnetic susceptibility at a fixed temperature, and also in a decrease in the hydrostatic pressure effect on the susceptibility of RCoO$_3$ compounds, which we have observed at $T=300$ K.
We present the crystal structures and magnetic properties of RE3Sb3Mg2O14 (La3Sb3Mg2O14, Pr3Sb3Mg2O14, Sm3Sb3Mg2O14, Eu3Sb3Mg2O14, Tb3Sb3Mg2O14, and Ho3Sb3Mg2O14), a family of novel materials based on a perfect geometry 2D rare earth Kagome lattice. Structure refinements were performed by the Rietveld method using X-ray diffraction data, indicating that the layered compounds are fully structurally ordered. The compounds crystallize in a rhombohedral supercell of the cubic pyrochlore structure, in the space group R-3m. As indicated by magnetic susceptibility measurements, they exhibit predominantly antiferromagnetic interactions between rare earth moments. Except for possibly Pr3Sb3Mg2O14 and Eu3Sb3Mg2O14, none of the compounds show any signs of magnetic ordering above 2 K. This RE3Sb3Mg2O14 family of compounds is similar to that of RE3Sb3Zn2O14, except the series reported here features a fully ordered distribution of cations in both the nonmagnetic antimony and magnesium sites and the magnetic rare earth kagome sites. The compounds appear to be relatively defect-free and are therefore model systems for investigating magnetic frustration on an ideal 2D rare earth Kagome lattice.
We perform a comparative magnetic study on two series of rare-earth (RE) based double perovskite iridates RE2BIrO6 (RE=Pr,Nd,Sm-Gd;B=Zn,Mg), which show Mott insulating state with tunable charge energy gap from ~330 meV to ~560 meV by changing RE cations. For nonmagnetic RE=Eu cations, Eu2MgIrO6 shows antiferromagnetic (AFM) order and field-induced spin-flop transitions below Neel temperature (TN) in comparison with the ferromagnetic (FM)-like behaviors of Eu2ZnIrO6 at low temperatures. For magnetic-moment-containing RE ions, Gd2BIrO6 show contrasting magnetic behaviors with FM-like transition (B=Zn) and AFM order (B=Mg), respectively. While, for RE=Pr, Nd and Sm ions, all members show AFM ground state and field-induced spin-flop transitions below TN irrespective of B=Zn or Mg cations. Moreover, two successive field-induced metamagnetic transitions are observed for RE2ZnIrO6 (RE=Pr,Nd) in high field up to 56 T, the resultant field temperature (H-T) phase diagrams are constructed. The diverse magnetic behaviors in RE2BIrO6 reveal that the 4f-Ir exchange interactions between the RE and Ir sublattices can mediate their magnetism.
140 - Junru Pan , Feng Jin , Jianting Ji 2021
We calculate the two-magnon Raman scattering spectra in antiferromagnetic phases of several frustrated spin models defined on the honeycomb lattice. These include the N{e}el antiferromagnetic phase of a $J_1$-$J_2$-$J_3$ model and the stripe phase of the Heisenberg-Kitaev model. We show that both the magnetic frustration and the anisotropy of interactions may significantly affect the Raman spectra. We further discuss the implications of our results to the magnetic excitations of the iron-based compound BaFe$_2$Se$_2$O and show how the magnetic interactions can be extracted from fit to the Raman spectrum.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا