Do you want to publish a course? Click here

Whats in a game? A theory of game models

251   0   0.0 ( 0 )
 Added by Tom Hirschowitz
 Publication date 2017
and research's language is English




Ask ChatGPT about the research

Game semantics is a rich and successful class of denotational models for programming languages. Most game models feature a rather intuitive setup, yet surprisingly difficult proofs of such basic results as associativity of composition of strategies. We set out to unify these models into a basic abstract framework for game semantics, game settings. Our main contribution is the generic construction, for any game setting, of a category of games and strategies. Furthermore, we extend the framework to deal with innocence, and prove that innocent strategies form a subcategory. We finally show that our constructions cover many concrete cases, mainly among the early models and the very recent sheaf-based ones.



rate research

Read More

Game semantics is a denotational semantics presenting compositionally the computational behaviour of various kinds of effectful programs. One of its celebrated achievement is to have obtained full abstraction results for programming languages with a variety of computational effects, in a single framework. This is known as the semantic cube or Abramskys cube, which for sequential deterministic programs establishes a correspondence between certain conditions on strategies (innocence, well-bracketing, visibility) and the absence of matching computational effects. Outside of the sequential deterministic realm, there are still a wealth of game semantics-based full abstraction results; but they no longer fit in a unified canvas. In particular, Ghica and Murawskis fully abstract model for shared state concurrency (IA) does not have a matching notion of pure parallel program-we say that parallelism and interference (i.e. state plus semaphores) are entangled. In this paper we construct a causal version of Ghica and Murawskis model, also fully abstract for IA. We provide compositional conditions parallel innocence and sequentiality, respectively banning interference and parallelism, and leading to four full abstraction results. To our knowledge, this is the first extension of Abramskys semantic cube programme beyond the sequential deterministic world.
Game semantics has provided adequate models for a variety of programming languages, in which types are interpreted as two-player games and programs as strategies. Melli`es (2018) suggested that such categories of games and strategies may be obtained as instances of a simple abstract construction on weak double categories. However, in the particular case of simple games, his construction slightly differs from the standard category. We refine the abstract construction using factorisation systems, and show that the new construction yields the standard category of simple games and strategies. Another perhaps surprising instance is Days convolution monoidal structure on the category of presheaves over a strict monoidal category.
94 - Neil Ghani 2020
We extend the open games framework for compositional game theory to encompass also mixed strategies, making essential use of the discrete probability distribution monad. We show that the resulting games form a symmetric monoidal category, which can be used to compose probabilistic games in parallel and sequentially. We also consider morphisms between games, and show that intuitive constructions give rise to functors and adjunctions between pure and probabilistic open games.
Parity games are infinite two-player games played on directed graphs. Parity game solvers are used in the domain of formal verification. This paper defines parametrized parity games and introduces an operation, Justify, that determines a winning strategy for a single node. By carefully ordering Justify steps, we reconstruct three algorithms well known from the literature.
Game comonads, introduced by Abramsky, Dawar and Wang and developed by Abramsky and Shah, give an interesting categorical semantics to some Spoiler-Duplicator games that are common in finite model theory. In particular they expose connections between one-sided and two-sided games, and parameters such as treewidth and treedepth and corresponding notions of decomposition. In the present paper, we expand the realm of game comonads to logics with generalised quantifiers. In particular, we introduce a comonad graded by two parameter $n leq k$ such that isomorphisms in the resulting Kleisli category are exactly Duplicator winning strategies in Hellas $n$-bijection game with $k$ pebbles. We define a one-sided version of this game which allows us to provide a categorical semantics for a number of logics with generalised quantifiers. We also give a novel notion of tree decomposition that emerges from the construction.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا