No Arabic abstract
In the problem of minimum connected dominating set with routing cost constraint, we are given a graph $G=(V,E)$, and the goal is to find the smallest connected dominating set $D$ of $G$ such that, for any two non-adjacent vertices $u$ and $v$ in $G$, the number of internal nodes on the shortest path between $u$ and $v$ in the subgraph of $G$ induced by $D cup {u,v}$ is at most $alpha$ times that in $G$. For general graphs, the only known previous approximability result is an $O(log n)$-approximation algorithm ($n=|V|$) for $alpha = 1$ by Ding et al. For any constant $alpha > 1$, we give an $O(n^{1-frac{1}{alpha}}(log n)^{frac{1}{alpha}})$-approximation algorithm. When $alpha geq 5$, we give an $O(sqrt{n}log n)$-approximation algorithm. Finally, we prove that, when $alpha =2$, unless $NP subseteq DTIME(n^{polylog n})$, for any constant $epsilon > 0$, the problem admits no polynomial-time $2^{log^{1-epsilon}n}$-approximation algorithm, improving upon the $Omega(log n)$ bound by Du et al. (albeit under a stronger hardness assumption).
We show that there is no deterministic local algorithm (constant-time distributed graph algorithm) that finds a $(7-epsilon)$-approximation of a minimum dominating set on planar graphs, for any positive constant $epsilon$. In prior work, the best lower bound on the approximation ratio has been $5-epsilon$; there is also an upper bound of $52$.
Given a graph $G=(V,E)$, the dominating set problem asks for a minimum subset of vertices $Dsubseteq V$ such that every vertex $uin Vsetminus D$ is adjacent to at least one vertex $vin D$. That is, the set $D$ satisfies the condition that $|N[v]cap D|geq 1$ for each $vin V$, where $N[v]$ is the closed neighborhood of $v$. In this paper, we study two variants of the classical dominating set problem: $boldmath{k}$-tuple dominating set ($k$-DS) problem and Liars dominating set (LDS) problem, and obtain several algorithmic and hardness results. On the algorithmic side, we present a constant factor ($frac{11}{2}$)-approximation algorithm for the Liars dominating set problem on unit disk graphs. Then, we obtain a PTAS for the $boldmath{k}$-tuple dominating set problem on unit disk graphs. On the hardness side, we show a $Omega (n^2)$ bits lower bound for the space complexity of any (randomized) streaming algorithm for Liars dominating set problem as well as for the $boldmath{k}$-tuple dominating set problem. Furthermore, we prove that the Liars dominating set problem on bipartite graphs is W[2]-hard.
We investigate the polynomial-time approximability of the multistage version of Min-Sum Set Cover ($mathrm{DSSC}$), a natural and intriguing generalization of the classical List Update problem. In $mathrm{DSSC}$, we maintain a sequence of permutations $(pi^0, pi^1, ldots, pi^T)$ on $n$ elements, based on a sequence of requests $(R^1, ldots, R^T)$. We aim to minimize the total cost of updating $pi^{t-1}$ to $pi^{t}$, quantified by the Kendall tau distance $mathrm{D}_{mathrm{KT}}(pi^{t-1}, pi^t)$, plus the total cost of covering each request $R^t$ with the current permutation $pi^t$, quantified by the position of the first element of $R^t$ in $pi^t$. Using a reduction from Set Cover, we show that $mathrm{DSSC}$ does not admit an $O(1)$-approximation, unless $mathrm{P} = mathrm{NP}$, and that any $o(log n)$ (resp. $o(r)$) approximation to $mathrm{DSSC}$ implies a sublogarithmic (resp. $o(r)$) approximation to Set Cover (resp. where each element appears at most $r$ times). Our main technical contribution is to show that $mathrm{DSSC}$ can be approximated in polynomial-time within a factor of $O(log^2 n)$ in general instances, by randomized rounding, and within a factor of $O(r^2)$, if all requests have cardinality at most $r$, by deterministic rounding.
This paper is devoted to the online dominating set problem and its variants. We believe the paper represents the first systematic study of the effect of two limitations of online algorithms: making irrevocable decisions while not knowing the future, and being incremental, i.e., having to maintain solutions to all prefixes of the input. This is quantified through competitive analyses of online algorithms against two optimal algorithms, both knowing the entire input, but only one having to be incremental. We also consider the competitive ratio of the weaker of the two optimal algorithms against the other. We consider important graph classes, distinguishing between connected and not necessarily connected graphs. For the classic graph classes of trees, bipartite, planar, and general graphs, we obtain tight results in almost all cases. We also derive upper and lower bounds for the class of bounded-degree graphs. From these analyses, we get detailed information regarding the significance of the necessary requirement that online algorithms be incremental. In some cases, having to be incremental fully accounts for the online algorithms disadvantage.
In this article, we study a generalized version of the maximum independent set and minimum dominating set problems, namely, the maximum $d$-distance independent set problem and the minimum $d$-distance dominating set problem on unit disk graphs for a positive integer $d>0$. We first show that the maximum $d$-distance independent set problem and the minimum $d$-distance dominating set problem belongs to NP-hard class. Next, we propose a simple polynomial-time constant-factor approximation algorithms and PTAS for both the problems.