No Arabic abstract
The standard cosmology strongly relies upon the Cosmological Principle, which consists on the hypotheses of large scale isotropy and homogeneity of the Universe. Testing these assumptions is, therefore, crucial to determining if there are deviations from the standard cosmological paradigm. In this paper, we use the latest type Ia supernova compilations, namely JLA and Union2.1 to test the cosmological isotropy at low redshift ranges ($z<0.1$). This is performed through a Bayesian selection analysis, in which we compare the standard, isotropic model, with another one including a dipole correction due to peculiar velocities. We find that the Union2.1 sample favors the dipole-corrected model, but the opposite happens for the JLA. Nonetheless, the velocity dipole results are in good agreement with previous analyses carried out with both datasets. We conclude that there are no significant indications for large anisotropic signals from nearby supernova compilations, albeit this test should be greatly improved with the upcoming cosmological surveys.
We analyze the magnitude-redshift data of type Ia supernovae included in the Union and Union2 compilations in the framework of an anisotropic Bianchi type I cosmological model and in the presence of a dark energy fluid with anisotropic equation of state. We find that the amount of deviation from isotropy of the equation of state of dark energy, the skewness delta, and the present level of anisotropy of the large-scale geometry of the Universe, the actual shear Sigma_0, are constrained in the ranges -0.16 < delta < 0.12 and -0.012 < Sigma_0 < 0.012 (1sigma C.L.) by Union2 data. Supernova data are then compatible with a standard isotropic universe (delta = Sigma_0 = 0), but a large level of anisotropy, both in the geometry of the Universe and in the equation of state of dark energy, is allowed.
We present the analysis of the first set of low-redshift Type Ia supernovae (SNe Ia) by the Carnegie Supernova Project. Well-sampled, high-precision optical (ugriBV) and near-infrared (NIR; YJHKs) light curves obtained in a well-understood photometric system are used to provide light-curve parameters, and ugriBVYJH template light curves. The intrinsic colors at maximum light are calibrated to compute optical--NIR color excesses for the full sample, thus allowing the properties of the reddening law in the host galaxies to be studied. A low value of Rv~1.7, is derived when using the entire sample of SNe. However, when the two highly reddened SNe in the sample are excluded, a value Galactic standard of Rv~3.2 is obtained. The colors of these two events are well matched by a reddening model due to circumstellar dust. The peak luminosities are calibrated using a two-parameter linear fit to the decline rates and the colors, or alternatively, the color excesses. In both cases, dispersions in absolute magnitude of 0.12--0.16 mag are obtained, depending on the filter-color combination. In contrast to the results obtained from color excesses, these fits give Rv~1--2, even when the two highly reddened SNe are excluded. This discrepancy suggests that, beyond the normal interstellar reddening produced in the host galaxies, there is an intrinsic dispersion in the colors of SNe Ia which is correlated with luminosity but independent of the decline rate. Finally, a Hubble diagram is produced by combining the results of the fits for each filter. The resulting scatter of 0.12 mag appears to be limited by peculiar velocities as evidenced by the strong correlation between the distance-modulus residuals among the different filters. The implication is that the actual precision of SN Ia distances is 3--4%.
The Carnegie Supernova Project (CSP) is a five-year survey being carried out at the Las Campanas Observatory to obtain high-quality light curves of ~100 low-redshift Type Ia supernovae in a well-defined photometric system. Here we present the first release of photometric data that contains the optical light curves of 35 Type Ia supernovae, and near-infrared light curves for a subset of 25 events. The data comprise 5559 optical (ugriBV) and 1043 near-infrared (YJHKs) data points in the natural system of the Swope telescope. Twenty-eight supernovae have pre-maximum data, and for 15 of these, the observations begin at least 5 days before B maximum. This is one of the most accurate datasets of low-redshift Type Ia supernovae published to date. When completed, the CSP dataset will constitute a fundamental reference for precise determinations of cosmological parameters, and serve as a rich resource for comparison with models of Type Ia supernovae.
With the recent increase in precision of our cosmological datasets, measurements of $Lambda$CDM model parameter provided by high- and low-redshift observations started to be in tension, i.e., the obtained values of such parameters were shown to be significantly different in a statistical sense. In~this work we tackle the tension on the value of the Hubble parameter, $H_0$, and the weighted amplitude of matter fluctuations, $S_8$, obtained from local or low-redshift measurements and from cosmic microwave background (CMB) observations. We combine the main approaches previously used in the literature by extending the cosmological model and accounting for extra systematic uncertainties. With such analysis we aim at exploring non standard cosmological models, implying deviation from a cosmological constant driven acceleration of the Universe expansion, in the presence of additional uncertainties in measurements. In more detail, we reconstruct the Dark Energy equation of state as a function of redshift, while we study the impact of type-Ia supernovae (SNIa) redshift-dependent astrophysical systematic effects on these tensions. We consider a SNIa intrinsic luminosity dependence on redshift due to the star formation rate in its environment, or the metallicity of the progenitor. We find that the $H_0$ and $S_8$ tensions can be significantly alleviated, or~even removed, if we account for varying Dark Energy for SNIa and CMB data. However, the tensions remain when we add baryon acoustic oscillations (BAO) data into the analysis, even after the addition of extra SNIa systematic uncertainties. This points towards the need of either new physics beyond late-time Dark Energy, or other unaccounted systematic effects (particulary in BAO measurements), to fully solve the present tensions.
We present an analysis of the maximum light, near ultraviolet (NUV; 2900-5500 A) spectra of 32 low redshift (0.001<z<0.08) Type Ia supernovae (SNe Ia), obtained with the Hubble Space Telescope (HST). We combine this spectroscopic sample with high-quality gri light curves obtained with robotic telescopes to measure photometric parameters, such as stretch, optical colour, and brightness. By comparing our data to a comparable sample of SNe Ia at intermediate-z (0.4<z<0.9), we detect modest spectral evolution (3-sigma), in the sense that our mean low-z NUV spectrum has a depressed flux compared to its intermediate-z counterpart. We also see a strongly increased dispersion about the mean with decreasing wavelength, confirming the results of earlier surveys. These trends are consistent with changes in metallicity as predicted by contemporary SN Ia spectral models. We also examine the properties of various NUV spectral diagnostics in the individual spectra. We find a general correlation between stretch and the velocity (or position) of many NUV spectral features. In particular, we observe that higher stretch SNe have larger Ca II H&K velocities, that also correlate with host galaxy stellar mass. This latter trend is probably driven by the well-established correlation between stretch and stellar mass. We find no trends between UV spectral features and optical colour. Mean spectra constructed according to whether the SN has a positive or negative Hubble residual show very little difference at NUV wavelengths, indicating that the NUV evolution and variation we identify do not directly correlate with Hubble residuals. Our work confirms and strengthens earlier conclusions regarding the complex behaviour of SNe Ia in the NUV spectral region, but suggests the correlations we find are more useful in constraining progenitor models than improving the use of SNe Ia as cosmological probes.