No Arabic abstract
The Carnegie Supernova Project (CSP) is a five-year survey being carried out at the Las Campanas Observatory to obtain high-quality light curves of ~100 low-redshift Type Ia supernovae in a well-defined photometric system. Here we present the first release of photometric data that contains the optical light curves of 35 Type Ia supernovae, and near-infrared light curves for a subset of 25 events. The data comprise 5559 optical (ugriBV) and 1043 near-infrared (YJHKs) data points in the natural system of the Swope telescope. Twenty-eight supernovae have pre-maximum data, and for 15 of these, the observations begin at least 5 days before B maximum. This is one of the most accurate datasets of low-redshift Type Ia supernovae published to date. When completed, the CSP dataset will constitute a fundamental reference for precise determinations of cosmological parameters, and serve as a rich resource for comparison with models of Type Ia supernovae.
We present the analysis of the first set of low-redshift Type Ia supernovae (SNe Ia) by the Carnegie Supernova Project. Well-sampled, high-precision optical (ugriBV) and near-infrared (NIR; YJHKs) light curves obtained in a well-understood photometric system are used to provide light-curve parameters, and ugriBVYJH template light curves. The intrinsic colors at maximum light are calibrated to compute optical--NIR color excesses for the full sample, thus allowing the properties of the reddening law in the host galaxies to be studied. A low value of Rv~1.7, is derived when using the entire sample of SNe. However, when the two highly reddened SNe in the sample are excluded, a value Galactic standard of Rv~3.2 is obtained. The colors of these two events are well matched by a reddening model due to circumstellar dust. The peak luminosities are calibrated using a two-parameter linear fit to the decline rates and the colors, or alternatively, the color excesses. In both cases, dispersions in absolute magnitude of 0.12--0.16 mag are obtained, depending on the filter-color combination. In contrast to the results obtained from color excesses, these fits give Rv~1--2, even when the two highly reddened SNe are excluded. This discrepancy suggests that, beyond the normal interstellar reddening produced in the host galaxies, there is an intrinsic dispersion in the colors of SNe Ia which is correlated with luminosity but independent of the decline rate. Finally, a Hubble diagram is produced by combining the results of the fits for each filter. The resulting scatter of 0.12 mag appears to be limited by peculiar velocities as evidenced by the strong correlation between the distance-modulus residuals among the different filters. The implication is that the actual precision of SN Ia distances is 3--4%.
The first phase of the Carnegie Supernova Project (CSP-I) was a dedicated supernova follow-up program based at the Las Campanas Observatory that collected science data of young, low-redshift supernovae between 2004 and 2009. Presented in this paper is the CSP-I photometric data release of low-redshift stripped-envelope core-collapse supernovae. The data consist of optical (uBgVri) photometry of 34 objects, with a subset of 26 having near-infrared (YJH) photometry. Twenty objects have optical pre-maximum coverage with a subset of 12 beginning at least five days prior to the epoch of B-band maximum brightness. In the near-infrared, 17 objects have pre-maximum observations with a subset of 14 beginning at least five days prior to the epoch of J-band maximum brightness. Analysis of this photometric data release is presented in companion papers focusing on techniques to estimate host-galaxy extinction (Stritzinger et al., submitted) and the light-curve and progenitor star properties of the sample (Taddia et al., submitted). The analysis of an accompanying visual-wavelength spectroscopy sample of ~150 spectra will be the subject of a future paper.
This is the first release of optical spectroscopic data of low-redshift Type Ia supernovae (SNe Ia) by the Carnegie Supernova Project including 604 previously unpublished spectra of 93 SNe Ia. The observations cover a range of phases from 12 days before to over 150 days after the time of B-band maximum light. With the addition of 228 near-maximum spectra from the literature we study the diversity among SNe Ia in a quantitative manner. For that purpose, spectroscopic parameters are employed such as expansion velocities from spectral line blueshifts, and pseudo-equivalent widths (pW). The values of those parameters at maximum light are obtained for 78 objects, thus providing a characterization of SNe Ia that may help to improve our understanding of the properties of the exploding systems and the thermonuclear flame propagation. Two objects, namely SNe 2005M and 2006is, stand out from the sample by showing peculiar Si II and S II velocities but otherwise standard velocities for the rest of the ions. We further study the correlations between spectroscopic and photometric parameters such as light-curve decline rate and color. In agreement with previous studies, we find that the pW of Si II absorption features are very good indicators of light-curve decline rate. Furthermore, we demonstrate that parameters such as pW2(SiII4130) and pW6(SiII5972) provide precise calibrations of the peak B-band luminosity with dispersions of ~0.15 mag. In the search for a secondary parameter in the calibration of peak luminosity for SNe Ia, we find a ~2--3-sigma correlation between B-band Hubble residuals and the velocity at maximum light of S II and Si II lines.
We use the spectroscopy and homogeneous photometry of 97 Type Ia supernovae obtained by the emph{Carnegie Supernova Project} as well as a subset of 36 Type Ia supernovae presented by Zheng et al. (2018) to examine maximum-light correlations in a four-dimensional (4-D) parameter space: $B$-band absolute magnitude, $M_B$, ion{Si}{2}~$lambda6355$ velocity, vsi, and ion{Si}{2} pseudo-equivalent widths pEW(ion{Si}{2}~$lambda6355$) and pEW(ion{Si}{2}~$lambda5972$). It is shown using Gaussian mixture models (GMMs) that the original four groups in the Branch diagram are well-defined and robust in this parameterization. We find three continuous groups that describe the behavior of our sample in [$M_B$, vsi] space. Extending the GMM into the full 4-D space yields a grouping system that only slightly alters group definitions in the [$M_B$, vsi] projection, showing that most of the clustering information in [$M_B$, vsi] is already contained in the 2-D GMM groupings. However, the full 4-D space does divide group membership for faster objects between core-normal and broad-line objects in the Branch diagram. A significant correlation between $M_B$ and pEW(ion{Si}{2}~$lambda5972$) is found, which implies that Branch group membership can be well-constrained by spectroscopic quantities alone. In general, we find that higher-dimensional GMMs reduce the uncertainty of group membership for objects between the originally defined Branch groups. We also find that the broad-line Branch group becomes nearly distinct with the inclusion of vsi, indicating that this subclass of SNe Ia may be somehow different from the other groups.
We present BVRI and unfiltered light curves of 93 Type Ia supernovae (SNe Ia) from the Lick Observatory Supernova Search (LOSS) follow-up program conducted between 2005 and 2018. Our sample consists of 78 spectroscopically normal SNe Ia, with the remainder divided between distinct subclasses (three SN 1991bg-like, three SN 1991T-like, four SNe Iax, two peculiar, and three super-Chandrasekhar events), and has a median redshift of 0.0192. The SNe in our sample have a median coverage of 16 photometric epochs at a cadence of 5.4 days, and the median first observed epoch is ~4.6 days before maximum B-band light. We describe how the SNe in our sample are discovered, observed, and processed, and we compare the results from our newly developed automated photometry pipeline to those from the previous processing pipeline used by LOSS. After investigating potential biases, we derive a final systematic uncertainty of 0.03 mag in BVRI for our dataset. We perform an analysis of our light curves with particular focus on using template fitting to measure the parameters that are useful in standardising SNe Ia as distance indicators. All of the data are available to the community, and we encourage future studies to incorporate our light curves in their analyses.