No Arabic abstract
Graphene supported on a transition metal dichalcogenide substrate offers a novel platform to study the spin transport in graphene in presence of a substrate induced spin-orbit coupling, while preserving its intrinsic charge transport properties. We report the first non-local spin transport measurements in graphene completely supported on a 3.5 nm thick tungsten disulfide (WS$_2$) substrate, and encapsulated from the top with a 8 nm thick hexagonal boron nitride layer. For graphene, having mobility up to 16,000 cm$^2$V$^{-1}$s$^{-1}$, we measure almost constant spin-signals both in electron and hole-doped regimes, independent of the conducting state of the underlying WS$_2$ substrate, which rules out the role of spin-absorption by WS$_2$. The spin-relaxation time $tau_{text{s}}$ for the electrons in graphene-on-WS$_2$ is drastically reduced down to~10 ps than $tau_{text{s}}$ ~ 800 ps in graphene-on-SiO$_2$ on the same chip. The strong suppression of $tau_{text{s}}$ along with a detectable weak anti-localization signature in the quantum magneto-resistance measurements is a clear effect of the WS$_2$ induced spin-orbit coupling (SOC) in graphene. Via the top-gate voltage application in the encapsulated region, we modulate the electric field by 1 V/nm, changing $tau_{text{s}}$ almost by a factor of four which suggests the electric-field control of the in-plane Rashba SOC. Further, via carrier-density dependence of $tau_{text{s}}$ we also identify the fingerprints of the Dyakonov-Perel type mechanism in the hole-doped regime at the graphene-WS$_2$ interface.
We report the first measurements of spin injection in to graphene through a 20 nm thick tungsten disulphide (WS$_2$) layer, along with a modified spin relaxation time ({tau}s) in graphene in the WS$_2$ environment, via spin-valve and Hanle spin-precession measurements, respectively. First, during the spin-injection into graphene through a WS$_2$-graphene interface, we can tune the interface resistance at different current bias and modify the spin injection efficiency, in a correlation with the conductivity-mismatch theory. Temperature assisted tunneling is identified as a dominant mechanism for the charge transport across the interface. Second, we measure the spin transport in graphene, underneath the WS$_2$ crystal and observe a significant reduction in the {tau}s down to 17 ps in graphene in the WS$_2$ covered region, compared to that in its pristine state. The reduced {tau}s indicates the WS$_2$-proximity induced additional dephasing of the spins in graphene.
Spin-orbit coupling in graphene can be increased far beyond its intrinsic value by proximity coupling to a transition metal dichalcogenide. In bilayer graphene, this effect was predicted to depend on the occupancy of both graphene layers, rendering it gate-tunable by an out-of-plane electric field. We experimentally confirm this prediction by studying magnetotransport in a dual-gated WSe$_2$/bilayer graphene heterostructure. Weak antilocalization, which is characteristic for phase-coherent transport in diffusive samples with spin-orbit interaction, can be strongly enhanced or suppressed at constant carrier density, depending on the polarity of the electric field. From the spin-orbit scattering times extracted from the fits, we calculate the corresponding Rashba and intrinsic spin-orbit parameters. They show a strong dependence on the transverse electric field, which is well described by a gate-dependent layer polarization of bilayer graphene.
In the framework of first-principles calculations, we investigate the structural and electronic properties of graphene in contact with as well as sandwiched between WS$_2$ and WSe$_2$ monolayers. We report the modification of the band characteristics due to the interaction at the interface and demonstrate that the presence of the dichalcogenides results in quantum spin Hall states in the absence of a magnetic field.
Van der Waals heterostructures composed of multiple few layer crystals allow the engineering of novel materials with predefined properties. As an example, coupling graphene weakly to materials with large spin orbit coupling (SOC) allows to engineer a sizeable SOC in graphene via proximity effects. The strength of the proximity effect depends on the overlap of the atomic orbitals, therefore, changing the interlayer distance via hydrostatic pressure can be utilized to enhance the interlayer coupling between the layers. In this work, we report measurements on a graphene/WSe$_2$ heterostructure exposed to increasing hydrostatic pressure. A clear transition from weak localization to weak anti-localization is visible as the pressure increases, demonstrating the increase of induced SOC in graphene.
We report the discovery of electric-field-induced transition from a topologically trivial to a topologically nontrivial band structure in an atomically sharp heterostructure of bilayer graphene (BLG) and single-layer WSe2 per the theoretical predictions of Gmitra and Fabian [Phys. Rev. Lett. 119, 146401 (2017)]. Through detailed studies of the quantum correction to the conductance in the BLG, we establish that the band-structure evolution arises from an interplay between proximity-induced strong spin-orbit interaction (SOI) and the layer polarizability in BLG. The low-energy carriers in the BLG experience an effective valley Zeeman SOI that is completely gate tunable to the extent that it can be switched on or off by applying a transverse displacement field or can be controllably transferred between the valence and the conduction band. We demonstrate that this results in the evolution from weak localization to weak antilocalization at a constant electronic density as the net displacement field is tuned from a positive to a negative value with a concomitant SOI-induced splitting of the low-energy bands of the BLG near the K (K) valley, which is a unique signature of the theoretically predicted spin-orbit valve effect. Our analysis shows that quantum correction to the Drude conductance in Dirac materials with strong induced SOI can only be explained satisfactorily by a theory that accounts for the SOI-induced spin splitting of the BLG low-energy bands. Our results demonstrate the potential for achieving highly tunable devices based on the valley Zeeman effect in dual-gated two-dimensional materials.