Do you want to publish a course? Click here

Electron dynamics in grating-type dielectric laser accelerators: particle transfer function, generalized acceleration/deflection gradients and Panofsky-Wenzel theorem

102   0   0.0 ( 0 )
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

The notions of acceleration gradient and deflection gradient are generalized to phasor quantities (complex-valued functions) in the context of dielectric laser acceleration (DLA). It is shown that the electromagnetic forces imparted on a near-resonant particle traversing a unit cell of a grating-type DLA can be conveniently described by generalized acceleration and deflection gradients. A~simple formulation of the Panofsky-Wenzel theorem in terms of the generalized gradients is given. It is shown that all particle transfer properties of a DLA unit cell can be derived from a single, complex-valued function, the generalized acceleration gradient.



rate research

Read More

The question of suitability of transfer matrix description of electrons traversing grating-type dielectric laser acceleration (DLA) structures is addressed. It is shown that although matrix considerations lead to interesting insights, the basic transfer properties of DLA cells cannot be described by a matrix. A more general notion of a transfer function is shown to be a simple and useful tool for formulating problems of particle dynamics in DLA. As an example, a focusing structure is proposed which works simultaneously for all electron phases.
Radio frequency particle accelerators are ubiquitous in ultra-small and ultrafast science, but their size and cost has prompted exploration of compact and scalable alternatives like the dielectric laser accelerator. We present the first demonstration of high gradient laser acceleration and deflection of electrons with a silicon structure. Driven by a five nanojoule, 130 fs mode-locked Ti:Sapphire laser at 907 nm wavelength, our devices achieve accelerating gradients in excess of 200 MeV/m and sub-optical cycle streaking of 96.30 keV electrons. These results pave the way for high gradient silicon dielectric laser accelerators using commercial lasers and sub-femtosecond electron beam experiments.
Laser powered dielectric structures achieve high-gradient particle acceleration by taking advantage of modern laser technology capable of producing electric fields in excess of 10GV/m. These fields can drive the bulk dielectric beyond its linear response, and break the phase synchronicity between the accelerating field and the electrons. We show how control of the pulse dispersion can be used to compensate the effect of self-phase modulation and maximize the energy gain in the laser accelerator.In our experiment, a high brightness 8MeV e-beam is used to probe accelerating fields of 1.8GV/m in a grating-reset dielectric structure illuminated by a 45fs laser pulse with a fluence of 0.7J/cm$^2$.
Dielectric laser acceleration is a versatile scheme to accelerate and control electrons with the help of femtosecond laser pulses in nanophotonic structures. We demonstrate here the generation of a train of electron pulses with individual pulse durations as short as $270pm80$ attoseconds(FWHM), measured in an indirect fashion, based on two subsequent dielectric laser interaction regions connected by a free-space electron drift section, all on a single photonic chip. In the first interaction region (the modulator), an energy modulation is imprinted on the electron pulse. During free propagation, this energy modulation evolves into a charge density modulation, which we probe in the second interaction region (the analyzer). These results will lead to new ways of probing ultrafast dynamics in matter and are essential for future laser-based particle accelerators on a photonic chip.
We demonstrate a compact technique to compress electron pulses to attosecond length, while keeping the energy spread reasonably small. The technique is based on Dielectric Laser Acceleration (DLA) in nanophotonic silicon structures. Unlike previous ballistic optical microbunching demonstrations, we use a modulator-demodulator scheme to compress phase space in the time and energy coordinates. With a second stage, we show that these pulses can be coherently accelerated, producing a net energy gain of $1.5pm0.1$ keV, which is significantly larger than the remaining energy spread of $0.88 ,_{-0.2}^{+0.0}$ keV FWHM. We show that by linearly sweeping the phase between the two stages, the energy spectrum can be coherently moved in a periodic manner, while keeping the energy spread roughly constant. After leaving the buncher, the electron pulse is also transversely focused, and can be matched into a following accelerator lattice. Thus, this setup is the prototype injector into a scalable DLA based on Alternating Phase Focusing (APF).
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا