Do you want to publish a course? Click here

Large magntocaloric effect and 3D Ising critical behaviour in Gd$_2$Cu$_2$In

58   0   0.0 ( 0 )
 Added by Harikrishnan Nair
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

The ternary intermetallic compound Gd$_2$Cu$_2$In crystallizes in Mo$_2$Fe$_2$B type structure with the space group $P4/mbm$ and we study critical behaviour and magnetocaloric effect near the ferromagnetic transition ($T_C$ $approx$ 94 K) using the magnetic and heat capacity measurements. The maximum entropy change ($Delta S_m$) and adiabatic temperature change ($Delta T_{ad}$) for the field value of 7 T were observed to be 13.8 J/kg.K and 6.5 K respectively. We have employed modified Arrott plot (MAP), Kouvel-Fisher (KF) procedures to estimate the critical exponents near the FM-PM phase transition. Critical exponents $beta$ = 0.312(2), $gamma$ = 1.080(5) are self-consistently estimated from the non-linear fitting. The $beta$ value is close to the three dimensional (3D) Ising model where as $gamma$ and $delta$ values are close to mean field model. The estimated critical exponents for Gd$_2$Cu$_2$In suggest that the system may belong to different universal class. All the three critical exponent obey Widom scale and collapse the scaled magnetic isotherms into two distinct branches below and above $T_C$ in accordance with single scaling equation. Specific heat measurements show a $lambda$ type peak near 94 K confirming the bulk magnetic ordering. The data near $T_C$ was fitted using the non-linear function $C_{P} = B + Cepsilon + A^{pm}|epsilon|^{-alpha}(1 + E^{pm} |epsilon|^{0.5})$ between -0.025$<epsilon<$0.025 which yielded the fourth critical exponent $alpha$ value to be 0.11 (3). The value indicates possible 3D-Ising behavior where Gd$^{3+}$ moments arranged uniaxially along long tetragonel axis c as reported in literature.



rate research

Read More

The influence of a staggered molecular field in frustrated rare-earth pyrochlores, produced via the magnetic iridium occupying the transition metal site, can generate exotic ground states, such as the fragmentation of the magnetization in the Ho compound. At variance with the Ising Ho$^{3+}$ moment, we focus on the behavior of the quasi isotropic magnetic moment of the Gd$^{3+}$ ion at the rare-earth site. By means of macroscopic measurements and neutron scattering, we find a complex situation where different components of the magnetic moment contribute to two antiferromagnetic non-collinear arrangements: a high temperature all in - all out order induced by the Ir molecular field, and Palmer and Chalker correlations that tend to order at much lower temperatures. This is enabled by the anisotropic nature of the Gd-Gd interactions and requires a weak easy-plane anisotropy of the Gd$^{3+}$ moment due to the mixing of the ground state with multiplets of higher spectral terms.
We investigated the anisotropic magnetic properties of CePd$_2$As$_2$ by magnetic, thermal and electrical transport studies. X-ray diffraction confirmed the tetragonal ThCr$_2$Si$_2$-type structure and the high-quality of the single crystals. Magnetisation and magnetic susceptibility data taken along the different crystallographic directions evidence a huge crystalline electric field (CEF) induced Ising-type magneto-crystalline anisotropy with a large $c$-axis moment and a small in-plane moment at low temperature. A detailed CEF analysis based on the magnetic susceptibility data indicates an almost pure $langlepm5/2 rvert$ CEF ground-state doublet with the dominantly $langlepm3/2 rvert$ and the $langlepm1/2 rvert$ doublets at 290 K and 330 K, respectively. At low temperature, we observe a uniaxial antiferromagnetic (AFM) transition at $T_N=14.7$ K with the crystallographic $c$-direction being the magnetic easy-axis. The magnetic entropy gain up to $T_N$ reaches almost $Rln2$ indicating localised $4f$-electron magnetism without significant Kondo-type interactions. Below $T_N$, the application of a magnetic field along the $c$-axis induces a metamagnetic transition from the AFM to a field-polarised phase at $mu_0H_{c0}=0.95$ T, exhibiting a text-book example of a spin-flip transition as anticipated for an Ising-type AFM.
For the skyrmion-hosting intermetallic Gd$_2$PdSi$_3$ with centrosymmetric hexagonal lattice and triangular net of rare earth sites, we report a thorough investigation of the magnetic phase diagram. Our work reveals a new magnetic phase with isotropic value of the critical field for all orientations, where the magnetic ordering vector $mathbf{q}$ is depinned from its preferred directions in the basal plane. This is in contrast to the highly anisotropic behavior of the low field phases, such as the skyrmion lattice (SkL), which are easily destroyed by in-plane magnetic field. The bulk nature of the SkL and of other magnetic phases was evidenced by specific-heat measurements. Resistivity anisotropy, likely originating from partial gapping of the density of states along $mathbf{q}$ in this RKKY magnet, is picked up via the planar Hall effect (PHE). The PHE confirms the single-$mathbf{q}$ nature of the magnetic order when the field is in the hexagonal plane, and allows to detect the preferred directions of $mathbf{q}$. For field aligned perpendicular to the basal plane, several scenarios for the depinned phase (DP), such as tilted conical order, are discussed on the basis of the data.
143 - Yongkang Luo , H. Li , Y. M. Dai 2015
We systematically measured the Hall effect in the extremely large magnetoresistance semimetal WTe$_2$. By carefully fitting the Hall resistivity to a two-band model, the temperature dependencies of the carrier density and mobility for both electron- and hole-type carriers were determined. We observed a sudden increase of the hole density below $sim$160~K, which is likely associated with the temperature-induced Lifshitz transition reported by a previous photoemission study. In addition, a more pronounced reduction in electron density occurs below 50~K, giving rise to comparable electron and hole densities at low temperature. Our observations indicate a possible electronic structure change below 50~K, which might be the direct driving force of the electron-hole ``compensation and the extremely large magnetoresistance as well. Numerical simulations imply that this material is unlikely to be a perfectly compensated system.
We present combined experimental and theoretical investigations on the magnetic and magnetocaloric behavior of Nd$_2$NiMnO$_6$. The relative cooling power (RCP) which quantifies the usefulness of a magnetocaloric (MC) material is estimated to be $approx 300$ J/Kg near the ferromagnetic transition at $T_C approx 195$ K. This RCP is comparable to the best known MC materials. Additionally, the magnetic entropy change has a broad profile ($T_C - 50~{rm K} < T < T_C + 50~{rm K}$) leading to an enhancement in the working-range of temperatures for magnetocaloric based cooling. These features make Nd$_2$NiMnO$_6$ a superior magnetocaloric material compared for example, to the nonmagnetic counterpart Y$_2$NiMnO$_6$. We identify the mechanism for the enhanced RCP which can guide search for future MC materials.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا