We present combined experimental and theoretical investigations on the magnetic and magnetocaloric behavior of Nd$_2$NiMnO$_6$. The relative cooling power (RCP) which quantifies the usefulness of a magnetocaloric (MC) material is estimated to be $approx 300$ J/Kg near the ferromagnetic transition at $T_C approx 195$ K. This RCP is comparable to the best known MC materials. Additionally, the magnetic entropy change has a broad profile ($T_C - 50~{rm K} < T < T_C + 50~{rm K}$) leading to an enhancement in the working-range of temperatures for magnetocaloric based cooling. These features make Nd$_2$NiMnO$_6$ a superior magnetocaloric material compared for example, to the nonmagnetic counterpart Y$_2$NiMnO$_6$. We identify the mechanism for the enhanced RCP which can guide search for future MC materials.
We present a comprehensive experimental study of magnetization and magnetocaloric effect (MCE) in double perovskite (DP) materials $R_2$NiMnO$_6$ with $R =$ Pr, Nd, Sm, Gd, Tb, and Dy. While a paramagnetic to ferromagnetic transition, with T$_{rm C}$ in the range $sim 100 - 200~$K, is a common feature that can be attributed to the ordering of Mn$^{4+}$ and Ni$^{2+}$ magnetic moments, qualitatively distinct behavior depending on the choice of $R$ is observed at low temperatures. These low-temperature anomalies in magnetization are also manifest in the change in magnetic entropy, $-Delta S_{M}$, whose sign depends on the choice of $R$. In order to understand these results, we present theoretical analysis based on mean-field approximation and Monte Carlo simulations on a minimal spin model. The model correctly captures the key features of the experimental observations.
We report a large entropy change (DeltaS) below 300 K, peaking near TC= 220 K, due to isothermal change of magnetic field, for Gd4Co3, with a refrigeration capacity higher than that of Gd. Notably, the isothermal magnetization is nonhysteretic - an important criterion for magnetic refrigeration without loss. DeltaS behavior is also compared with that of magnetoresistance.
We have explored the magnetism in the non-geometrically frustrated spin-chain system $gamma$-CoV$_{2}$O$_{6}$ which possesses a complex magnetic exchange network. Our neutron diffraction patterns at low temperatures ($T$ $leqslant$ $T_{mathrm{N}}$ = 6.6 K) are best described by a model in which two magnetic phases coexist in a volume ratio 65(1) : 35(1), with each phase consisting of a single spin modulation. This model fits previous studies and our observations better than the model proposed by Lenertz $et$ $al$ in J. Phys. Chem. C 118, 13981 (2014), which consisted of one phase with two spin modulations. By decreasing the temperature from $T_{mathrm{N}}$, the minority phase of our model undergoes an incommensurate-commensurate lock-in transition at $T^{*}$ = 5.6 K. Based on these results, we propose that phase separation is an alternative approach for degeneracy-lifting in frustrated magnets.
We report magnetic and electrical properties for single crystals of NdMn$_6$Sn$_6$ and SmMn$_6$Sn$_6$. They crystallize into a structure which has distorted, Mn-based kagome lattices, compared to the pristine kagome lattices in heavy-rare-earth-bearing RMn$_6$Sn$_6$ compounds. They are hightemperature ferromagnets of which the R moment is parallel with the Mn moment. We observed a large intrinsic anomalous Hall effect (AHE) that is comparable to the ferrimagnetic, heavy-R siblings in a wide range of temperature. We conclude that their intrinsic AHE is stemming from the Mn-based kagome lattice, just as in the heavy RMn$_6$Sn$_6$.
We investigate the temperature dependence of the spin dynamics in the pyrochlore magnet Nd$_2$Zr$_2$O$_7$ by neutron scattering experiments. At low temperature, this material undergoes a transition towards an all in - all out antiferromagnetic phase and the spin dynamics encompass a dispersion-less mode, characterized by a dynamical spin ice structure factor. Unexpectedly, this mode is found to survive above $T_{rm N} approx 300$ mK. Concomitantly, elastic correlations of the spin ice type develop. These are the signatures of a peculiar correlated paramagnetic phase which can be considered as a new example of Coulomb phase. Our observations near $T_{rm N}$ do not reproduce the signatures expected for a Higgs transition, but show reminiscent features of the all in - all out order superimposed on a Coulomb phase.