We present a time-resolved study of the magnetization dynamics in a microstructured Cr$|$Heusler$|$Pt waveguide driven by the Spin-Hall-Effect and the Spin-Transfer-Torque effect via short current pulses. In particular, we focus on the determination of the threshold current at which the spin-wave damping is compensated. We have developed a novel method based on the temporal evolution of the magnon density at the beginning of an applied current pulse at which the magnon density deviates from the thermal level. Since this method does not depend on the signal-to-noise ratio, it allows for a robust and reliable determination of the threshold current which is important for the characterization of any future application based on the Spin-Transfer-Torque effect.
We investigate the dynamics of a magnetic vortex driven by spin-transfer torque due to spin current in the adiabatic case. The vortex core represented by collective coordinate experiences a transverse force proportional to the product of spin current and gyrovector, which can be interpreted as the geometric force determined by topological charges. We show that this force is just a reaction force of Lorentz-type force from the spin current of conduction electrons. Based on our analyses, we propose analytically and numerically a possible experiment to check the vortex displacement by spin current in the case of single magnetic nanodot.
This paper shows that the presence of two dynamical regimes, characterized by different precessional-axis, is the origin of the non-monotonic behavior of the output integrated power for large-amplitude magnetization precession driven by spin-polarized current in nanoscale exchange biased spin-valves. In particular, at the transition current between those two regimes exists an abruptly loss in the integrated output power. After the introduction of a time-frequency analysis of magnetization dynamics based on the wavelet transform, we performed a numerical experiment by means of micromagnetic simulations. Our results predicted that, together with a modulation of the frequency of the main excited mode of the magnetization precession, at high non-linear dynamical regime the instantaneous output power of the spin-torque oscillator can disappear and then reappear at nanosecond scale.
Spintronics had a widespread impact over the past decades due to transferring information by spin rather than electric currents. Its further development requires miniaturization and reduction of characteristic timescales of spin dynamics combining the sub-nanometer spatial and femtosecond temporal ranges. These demands shift the focus of interest towards the fundamental open question of the interaction of femtosecond spin current (SC) pulses with a ferromagnet (FM). The spatio-temporal properties of the impulsive spin transfer torque exerted by ultrashort SC pulses on the FM open the time domain for probing non-uniform magnetization dynamics. Here we employ laser-generated ultrashort SC pulses for driving ultrafast spin dynamics in FM and analyzing its transient local source. Transverse spins injected into FM excite inhomogeneous high-frequency spin dynamics up to 0.6 THz, indicating that the perturbation of the FM magnetization is confined to 2 nm.
We investigate an interfacial spin-transfer torque and $beta$-term torque with alternating current (AC) parallel to a magnetic interface. We find that both torques are resonantly enhanced as the AC frequency approaches to the exchange splitting energy. We show that this resonance allows us to estimate directly the interfacial exchange interaction strength from the domain wall motion. We also find that the $beta$-term includes an unconventional contribution which is proportional to the time derivative of the current and exists even in absence of any spin relaxation processes.
A mesoscopic description of spin-transfer effect is proposed, based on the spin-injection mechanism occurring at the junction with a ferromagnet. The effect of spin-injection is to modify locally, in the ferromagnetic configuration space, the density of magnetic moments. The corresponding gradient leads to a current-dependent diffusion process of the magnetization. In order to describe this effect, the dynamics of the magnetization of a ferromagnetic single domain is reconsidered in the framework of the thermokinetic theory of mesoscopic systems. Assuming an Onsager cross-coefficient that couples the currents, it is shown that spin-dependent electric transport leads to a correction of the Landau-Lifshitz-Gilbert equation of the ferromagnetic order parameter with supplementary diffusion terms. The consequence of spin-injection in terms of activation process of the ferromagnet is deduced, and the expressions of the effective energy barrier and of the critical current are derived. Magnetic fluctuations are calculated: the correction to the fluctuations is similar to that predicted for the activation. These predictions are consistent with the measurements of spin-transfer obtained in the activation regime and for ferromagnetic resonance under spin-injection.
T. Meyer
,T. Bracher
,F. Heussner
.
(2017)
.
"Characterization of Spin-Transfer-Torque effect induced magnetization dynamics driven by short current pulses"
.
Thomas Meyer
هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا