Do you want to publish a course? Click here

Magnetization reversal driven by spin-injection : a mesoscopic spin-transfer effect

169   0   0.0 ( 0 )
 Added by Jean-Eric Wegrowe
 Publication date 2008
  fields Physics
and research's language is English




Ask ChatGPT about the research

A mesoscopic description of spin-transfer effect is proposed, based on the spin-injection mechanism occurring at the junction with a ferromagnet. The effect of spin-injection is to modify locally, in the ferromagnetic configuration space, the density of magnetic moments. The corresponding gradient leads to a current-dependent diffusion process of the magnetization. In order to describe this effect, the dynamics of the magnetization of a ferromagnetic single domain is reconsidered in the framework of the thermokinetic theory of mesoscopic systems. Assuming an Onsager cross-coefficient that couples the currents, it is shown that spin-dependent electric transport leads to a correction of the Landau-Lifshitz-Gilbert equation of the ferromagnetic order parameter with supplementary diffusion terms. The consequence of spin-injection in terms of activation process of the ferromagnet is deduced, and the expressions of the effective energy barrier and of the critical current are derived. Magnetic fluctuations are calculated: the correction to the fluctuations is similar to that predicted for the activation. These predictions are consistent with the measurements of spin-transfer obtained in the activation regime and for ferromagnetic resonance under spin-injection.



rate research

Read More

The concept of perpendicular shape anisotropy spin-transfer torque magnetic random-access memory (PSA-STT-MRAM) consists in increasing the storage layer thickness to values comparable to the cell diameter, to induce a perpendicular shape anisotropy in the magnetic storage layer. Making use of that contribution, the downsize scalability of the STT-MRAM may be extended towards sub-20 nm technological nodes, thanks to a reinforcement of the thermal stability factor $Delta$. Although the larger storage layer thickness improves $Delta$, it is expected to negatively impact the writing current and switching time. Hence, optimization of the cell dimensions (diameter, thickness) is of utmost importance for attaining a sufficiently high $Delta$ while keeping a moderate writing current. Micromagnetic simulations were carried out for different pillar thicknesses of fixed lateral size 20 nm. The switching time and the reversal mechanism were analysed as a function of the applied voltage and aspect-ratio (AR) of the storage layer. For AR $<$ 1, the magnetization reversal resembles a macrospin-like mechanism, while for AR $>$ 1 a non-coherent reversal is observed, characterized by the nucleation of a transverse domain wall at the ferromagnet/insulator interface which then propagates along the vertical axis of the pillar. It was further observed that the inverse of the switching time is linearly dependent on the applied voltage. This study was extended to sub-20 nm width with a value of $Delta$ around 80. It was observed that the voltage necessary to reverse the magnetic layer increases as the lateral size is reduced, accompanied with a transition from macrospin-reversal to a buckling-like reversal at high aspect-ratios.
Magnetization switching provoked by spin-injection is studied in Ni nanowires of various size and morphology. The response of the magnetization to the spin-injection is studied as a function of the amplitude of the current, the temperature, and the symmetry of the interfaces. The amplitude of the response of the magnetization to spin-injection is a decreasing function of the temperature, does not depend on the current sign, and occurs only in the case of asymmetric interfaces. It is shown that the spin-injection does not act on small magnetic inhomogeneities inside the layer. Some consequences in terms of longitudinal spin-transfer are discussed.
We present a time-resolved study of the magnetization dynamics in a microstructured Cr$|$Heusler$|$Pt waveguide driven by the Spin-Hall-Effect and the Spin-Transfer-Torque effect via short current pulses. In particular, we focus on the determination of the threshold current at which the spin-wave damping is compensated. We have developed a novel method based on the temporal evolution of the magnon density at the beginning of an applied current pulse at which the magnon density deviates from the thermal level. Since this method does not depend on the signal-to-noise ratio, it allows for a robust and reliable determination of the threshold current which is important for the characterization of any future application based on the Spin-Transfer-Torque effect.
138 - J. Grollier 2002
We analyse the effect of the applied field (Happl) on the current-driven magnetization reversal in pillar-shaped Co/Cu/Co trilayers, where we observe two different types of transition between the parallel (P) and antiparallel (AP) magnetic configurations of the Co layers. If Happl is weaker than a rather small threshold value, the transitions between P and AP are irreversible and relatively sharp. For Happl exceding the threshold value, the same transitions are progressive and reversible. We show that the criteria for the stability of the P and AP states and the experimentally observed behavior can be precisely accounted for by introducing the current-induced torque of the spin transfer models in a Landau-Lifschitz-Gilbert equation. This approach also provides a good description for the field dependence of the critical currents.
109 - N. Poli , J. P. Morten , M. Urech 2007
We study spin accumulation and spin relaxation in a superconducting nanowire. Spins are injected and detected by using a set of magnetic tunnel contact electrodes, closely spaced along the nanowire. We observe a giant enhancement of the spin accumulation of up to five orders of magnitude on transition into the superconducting state, consistent with the expected changes in the density of states. The spin relaxation length decreases by an order of magnitude from its value in the normal state. These measurements combined with our theoretical model, allow us to distinguish the individual spin flip mechanisms present in the transport channel. Our conclusion is that magnetic impurities rather than spin-orbit coupling dominate spin-flip scattering in the superconducting state.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا