No Arabic abstract
We introduce an analogue of the theory of length spaces into the setting of Lorentzian geometry and causality theory. The r^ole of the metric is taken over by the time separation function, in terms of which all basic notions are formulated. In this way we recover many fundamental results in greater generality, while at the same time clarifying the minimal requirements for and the interdependence of the basic building blocks of the theory. A main focus of this work is the introduction of synthetic curvature bounds, akin to the theory of Alexandrov and CAT$(k)$-spaces, based on triangle comparison. Applications include Lorentzian manifolds with metrics of low regularity, closed cone structures, and certain approaches to quantum gravity.
The null distance of Sormani and Vega encodes the manifold topology as well as the causality structure of a (smooth) spacetime. We extend this concept to Lorentzian length spaces, the analog of (metric) length spaces, which generalize Lorentzian causality theory beyond the manifold level. We then study Gromov-Hausdorff convergence based on the null distance in warped product Lorentzian length spaces and prove first results on its compatibility with synthetic curvature bounds.
Lorentzian manifolds with parallel spinors are important objects of study in several branches of geometry, analysis and mathematical physics. Their Cauchy problem has recently been discussed by Baum, Leistner and Lischewski, who proved that the problem locally has a unique solution up to diffeomorphisms, provided that the intial data given on a space-like hypersurface satisfy some constraint equations. In this article we provide a method to solve these constraint equations. In particular, any curve (resp. closed curve) in the moduli space of Riemannian metrics on $M$ with a parallel spinor gives rise to a solution of the constraint equations on $Mtimes (a,b)$ (resp. $Mtimes S^1$).
We show that finiteness of the Lorentzian distance is equivalent to the existence of generalised time functions with gradient uniformly bounded away from light cones. To derive this result we introduce new techniques to construct and manipulate achronal sets. As a consequence of these techniques we obtain a functional description of the Lorentzian distance extending the work of Franco and Moretti.
Studies in string theory and quantum gravity suggest the existence of a finite lower limit $Delta x_0$ to the possible resolution of distances, at the latest on the scale of the Planck length of $10^{-35}m$. Within the framework of the euclidean path integral we explicitly show ultraviolet regularisation in field theory through this short distance structure. Both rotation and translation invariance can be preserved. An example geometry is studied in detail.
Using a particular Hilbert space representation of minimum-length deformed quantum mechanics, we show that the resolution of the wave-function singularities for strongly attractive potentials, as well as cosmological singularity in the framework of a minisuperspace approximation, is uniquely tied to the fact that this sort of quantum mechanics implies the reduced Hilbert space of state-vectors consisting of the functions nonlocalizable beneath the Planck length. (Corrections to the Hamiltonian do not provide such an universal mechanism for avoiding singularities.) Following this discussion, as a next step we take a critical view of the meaning of wave-function in such a quantum theory. For this reason we focus on the construction of current vector and the subsequent continuity equation. Some issues gained in the framework of this discussion are then considered in the context of field theory. Finally, we discuss the classical limit of the minimum-length deformed quantum mechanics and its dramatic consequences.