We show that finiteness of the Lorentzian distance is equivalent to the existence of generalised time functions with gradient uniformly bounded away from light cones. To derive this result we introduce new techniques to construct and manipulate achronal sets. As a consequence of these techniques we obtain a functional description of the Lorentzian distance extending the work of Franco and Moretti.
It is well-known that global hyperbolicity implies that the Lorentzian distance is finite and continuous. By carefully analysing the causes of discontinuity of the Lorentzian distance, we show that in most other respects the finiteness and continuity of the Lorentzian distance is independent of the causal structure. The proof of these results relies on the properties of a class of generalised time functions introduced by the authors in cite{RennieWhale2016}.
The null distance of Sormani and Vega encodes the manifold topology as well as the causality structure of a (smooth) spacetime. We extend this concept to Lorentzian length spaces, the analog of (metric) length spaces, which generalize Lorentzian causality theory beyond the manifold level. We then study Gromov-Hausdorff convergence based on the null distance in warped product Lorentzian length spaces and prove first results on its compatibility with synthetic curvature bounds.
We introduce an analogue of the theory of length spaces into the setting of Lorentzian geometry and causality theory. The r^ole of the metric is taken over by the time separation function, in terms of which all basic notions are formulated. In this way we recover many fundamental results in greater generality, while at the same time clarifying the minimal requirements for and the interdependence of the basic building blocks of the theory. A main focus of this work is the introduction of synthetic curvature bounds, akin to the theory of Alexandrov and CAT$(k)$-spaces, based on triangle comparison. Applications include Lorentzian manifolds with metrics of low regularity, closed cone structures, and certain approaches to quantum gravity.
In a recent work I showed that the family of smooth steep time functions can be used to recover the order, the topology and the (Lorentz-Finsler) distance of spacetime. In this work I present the main ideas entering the proof of the (smooth) distance formula, particularly the product trick which converts metric statements into causal ones. The paper ends with a second proof of the distance formula valid in globally hyperbolic Lorentzian spacetimes.
This paper lays the foundations for a nonlinear theory of differential geometry that is developed in a subsequent paper which is based on Colombeau algebras of tensor distributions on manifolds. We adopt a new approach and construct a global theory of algebras of generalised functions on manifolds based on the concept of smoothing operators. This produces a generalisation of previous theories in a form which is suitable for applications to differential geometry. The generalised Lie derivative is introduced and shown to commute with the embedding of distributions. It is also shown that the covariant derivative of a generalised scalar field commutes with this embedding at the level of association.