No Arabic abstract
Experiments on bilayer graphene unveiled a fascinating realization of stacking disorder where triangular domains with well-defined Bernal stacking are delimited by a hexagonal network of strain solitons. Here we show by means of numerical simulations that this is a consequence of a structural transformation of the moir{e} pattern inherent of twisted bilayer graphene taking place at twist angles $theta$ below a crossover angle $theta^{star}=1.2^{circ}$. The transformation is governed by the interplay between the interlayer van der Waals interaction and the in-plane strain field, and is revealed by a change in the functional form of the twist energy density. This transformation unveils an electronic regime characteristic of vanishing twist angles in which the charge density converges, though not uniformly, to that of ideal bilayer graphene with Bernal stacking. On the other hand, the stacking domain boundaries form a distinct charge density pattern that provides the STM signature of the hexagonal solitonic network.
We study the localization properties of electrons in incommensurate twisted bilayer graphene for small angles, encompassing the narrow-band regime, by numerically exact means. Sub-ballistic states are found within the narrow-band region around the magic angle. Such states are delocalized in momentum-space and follow non-Poissonian level statistics, in contrast with their ballistic counterparts found for close commensurate angles. Transport results corroborate this picture: for large enough systems, the conductance decreases with system size for incommensurate angles within the sub-ballistic regime. Our results show that incommensurability effects are of crucial importance in the narrow-band regime. The incommensurate nature of a general twist angle must therefore be taken into account for an accurate description of magic-angle twisted bilayer graphene.
Close to a magical angle, twisted bilayer graphene (TBLG) systems exhibit isolated flat electronic bands and, accordingly, strong electron localization. TBLGs have hence been ideal platforms to explore superconductivity, correlated insulating states, magnetism, and quantized anomalous Hall states in reduced dimension. Below a threshold twist angle ($sim$ $1.1^circ$), the TBLG superlattice undergoes lattice reconstruction, leading to a periodic moire structure which presents a marked atomic corrugation. Using a tight-binding framework, this research demonstrates that superlattice reconstruction affects significantly the electronic structure of small-angle TBLGs. The first magic angle at $sim$ $1.1^circ$ is found to be a critical case presenting globally maximized electron localization, thus separating reconstructed TBLGs into two classes with clearly distinct electronic properties. While low-energy Dirac fermions are still preserved at large twist angles $> 1.1 ^circ$, small-angle ($lesssim 1.1^circ$) TBLG systems present common features such as large spatial variation and strong electron localization observed in unfavorable AA stacking regions. However, for small twist angles below $1.1 ^circ$, the relative contribution of the local AA regions is progressively reduced, thus precluding the emergence of further magic angles, in very good agreement with existing experimental evidence.
Twisted bilayer graphene with a twist angle of around 1.1{deg} features a pair of isolated flat electronic bands and forms a strongly correlated electronic platform. Here, we use scanning tunneling microscopy to probe local properties of highly tunable twisted bilayer graphene devices and show that the flat bands strongly deform when aligned with the Fermi level. At half filling of the bands, we observe the development of gaps originating from correlated insulating states. Near charge neutrality, we find a previously unidentified correlated regime featuring a substantially enhanced flat band splitting that we describe within a microscopic model predicting a strong tendency towards nematic ordering. Our results provide insights into symmetry breaking correlation effects and highlight the importance of electronic interactions for all filling factors in twisted bilayer graphene.
When light is incident on a medium with spatially disordered index of refraction, interference effects lead to near-perfect reflection when the number of dielectric interfaces is large, so that the medium becomes a transparent mirror. We investigate the analog of this effect for electrons in twisted bilayer graphene (TBG), for which local fluctuations of the twist angle give rise to a spatially random Fermi velocity. In a description that includes only spatial variation of Fermi velocity, we derive the incident-angle-dependent localization length for the case of quasi-one-dimensional disorder by mapping this problem onto one dimensional Anderson localization. The localization length diverges at normal incidence as a consequence of Klein tunneling, leading to a power-law decay of the transmission when averaged over incidence angle. In a minimal model of TBG, the modulation of twist angle also shifts the location of the Dirac cones in momentum space in a way that can be described by a random gauge field, and thus Klein tunneling is inexact. However, when the Dirac electrons incident momentum is large compared to these shifts, the primary effect of twist disorder is only to shift the incident angle associated with perfect transmission away from zero. These results suggest a mechanism for disorder-induced collimation, valley filtration, and energy filtration of Dirac electron beams, so that TBG offers a promising new platform for Dirac fermion optics.
Van der Waals (vdW) heterostructures ---formed by stacking or growing two-dimensional (2D) crystals on top of each other--- have emerged as a new promising route to tailor and engineer the properties of 2D materials. Twisted bilayer graphene (tBLG), a simple vdW structure where the interference between two misaligned graphene lattices leads to the formation of a moire pattern, is a test bed to study the effects of the interaction and misalignment between layers, key players for determining the electronic properties of these stackings. In this chapter, we present in a pedagogical way the general theory used to describe lattice mismatched and misaligned vdW structures. We apply it to the study of tBLG in the limit of small rotations and see how the coupling between the two layers leads both to an angle dependent renormalization of graphenes Fermi velocity and appearance of low-energy van Hove singularities. The optical response of this system is then addressed by computing the optical conductivity and the dispersion relation of tBLG surface plasmon-polaritons.