No Arabic abstract
The recently derived distributions for the scattering-matrix elements in quantum chaotic systems are not accessible in the majority of experiments, whereas the cross sections are. We analytically compute distributions for the off-diagonal cross sections in the Heidelberg approach, which is ap- plicable to a wide range of quantum chaotic systems. We thus eventually fully solve a problem which already arose more than half a century ago in compound-nucleus scattering. We compare our results with data from microwave and compound-nucleus experiments, particularly addressing the transition from isolated resonances towards the Ericson regime of strongly overlapping ones.
Typical eigenstates of quantum systems, whose classical limit is chaotic, are well approximated as random states. Corresponding eigenvalue spectra is modeled through appropriate ensemble of random matrix theory. However, a small subset of states violate this principle and display eigenstate localization, a counter-intuitive feature known to arise due to purely quantum or semiclassical effects. In the spectrum of chaotic systems, the localized and random states interact with one another and modifies the spectral statistics. In this work, a $3 times 3$ random matrix model is used to obtain exact result for the ratio of spacing between a generic and localized state. We consider time-reversal-invariant as well as non-invariant scenarios. These results agree with the spectra computed from realistic physical systems that display localized eigenmodes.
Uhlmanns concept of quantum holonomy for paths of density operators is generalised to the off-diagonal case providing insight into the geometry of state space when the Uhlmann holonomy is undefined. Comparison with previous off-diagonal geometric phase definitions is carried out and an example comprising the transport of a Bell-state mixture is given.
We present exact results on a novel kind of emergent random matrix universality that quantum many-body systems at infinite temperature can exhibit. Specifically, we consider an ensemble of pure states supported on a small subsystem, generated from projective measurements of the remainder of the system in a local basis. We rigorously show that the ensemble, derived for a class of quantum chaotic systems undergoing quench dynamics, approaches a universal form completely independent of system details: it becomes uniformly distributed in Hilbert space. This goes beyond the standard paradigm of quantum thermalization, which dictates that the subsystem relaxes to an ensemble of quantum states that reproduces the expectation values of local observables in a thermal mixed state. Our results imply more generally that the distribution of quantum states themselves becomes indistinguishable from those of uniformly random ones, i.e. the ensemble forms a quantum state-design in the parlance of quantum information theory. Our work establishes bridges between quantum many-body physics, quantum information and random matrix theory, by showing that pseudo-random states can arise from isolated quantum dynamics, opening up new ways to design applications for quantum state tomography and benchmarking.
We semiclassically derive the leading off-diagonal correction to the spectral form factor of quantum systems with a chaotic classical counterpart. To this end we present a phase space generalization of a recent approach for uniformly hyperbolic systems (M. Sieber and K. Richter, Phys. Scr. T90, 128 (2001); M. Sieber, J. Phys. A: Math. Gen. 35, L613 (2002)). Our results coincide with corresponding random matrix predictions. Furthermore, we study the transition from the Gaussian orthogonal to the Gaussian unitary ensemble.
In these proceedings we present preliminary $pi^{+}pi^{-}$ electroproduction cross sections off protons in the kinematical area of 1.4 GeV $< W <$ 1.8 GeV and 0.4 GeV$^{2}$ $< Q^{2} < 1.1$ GeV$^{2}$. Our results extend the kinematical coverage for this exclusive channel with respect to previous measurements. Furthermore, the $pi^{+}pi^{-}$ electroproduction cross sections were obtained for $Q^2$-bins of much smaller size. The future analysis of this data within the framework of the JLAB-MSU reaction model (JM) will considerably improve our knowledge on the $Q^2$ evolution of the transition $gamma_{v}NN^*$ electrocouplings, in particular for the resonances with masses above 1.6 GeV.