No Arabic abstract
In this paper we introduce and study Event-Clock Nested Automata (ECNA), a formalism that combines Event Clock Automata (ECA) and Visibly Pushdown Automata (VPA). ECNA allow to express real-time properties over non-regular patterns of recursive programs. We prove that ECNA retain the same closure and decidability properties of ECA and VPA being closed under Boolean operations and having a decidable language-inclusion problem. In particular, we prove that emptiness, universality, and language-inclusion for ECNA are EXPTIME-complete problems. As for the expressiveness, we have that ECNA properly extend any previous attempt in the literature of combining ECA and VPA.
In this paper, we study the parameter synthesis problem for a class of parametric timed automata. The problem asks to construct the set of valuations of the parameters in the parametric timed automa- ton, referred to as the feasible region, under which the resulting timed automaton satisfies certain properties. We show that the parameter syn- thesis problem of parametric timed automata with only one parametric clock (unlimited concretely constrained clock) and arbitrarily many pa- rameters is solvable when all the expressions are linear expressions. And it is moreover the synthesis problem is solvable when the form of con- straints are parameter polynomial inequality not just simple constraint and parameter domain is nonnegative real number.
We introduce homing vector automata, which are finite automata augmented by a vector that is multiplied at each step by a matrix determined by the current transition, and have to return the vector to its original setting in order to accept the input. The computational power and properties of deterministic, nondeterministic, blind, non-blind, real-time and one-w
We introduce a certain restriction of weighted automata over the rationals, called image-binary automata. We show that such automata accept the regular languages, can be exponentially more succinct than corresponding NFAs, and allow for polynomial complementation, union, and intersection. This compares favourably with unambiguous automata whose complementation requires a superpolynomial state blowup. We also study an infinite-word version, image-binary Buchi automata. We show that such automata are amenable to probabilistic model checking, similarly to unambiguous Buchi automata. We provide algorithms to translate $k$-ambiguous Buchi automata to image-binary Buchi automata, leading to model-checking algorithms with optimal computational complexity.
Parikh automata extend automata with counters whose values can only be tested at the end of the computation, with respect to membership into a semi-linear set. Parikh automata have found several applications, for instance in transducer theory, as they enjoy decidable emptiness problem. In this paper, we study two-way Parikh automata. We show that emptiness becomes undecidable in the non-deterministic case. However, it is PSpace-C when the number of visits to any input position is bounded and the semi-linear set is given as an existential Presburger formula. We also give tight complexity bounds for the inclusion, equivalence and universality problems. Finally, we characterise precisely the complexity of those problems when the semi-linear constraint is given by an arbitrary Presburger formula.
We present an underapproximation for context-free languages by filtering out runs of the underlying pushdown automaton depending on how the stack height evolves over time. In particular, we assign to each run a number quantifying the oscillating behavior of the stack along the run. We study languages accepted by pushdown automata restricted to k-oscillating runs. We relate oscillation on pushdown automata with a counterpart restriction on context-free grammars. We also provide a way to filter all but the k-oscillating runs from a given PDA by annotating stack symbols with information about the oscillation. Finally, we study closure properties of the defined class of languages and the complexity of the k-emptiness problem asking, given a pushdown automaton P and k >= 0, whether P has a k-oscillating run. We show that, when k is not part of the input, the k-emptiness problem is NLOGSPACE-complete.