Do you want to publish a course? Click here

Surface plasmon polaritons in thin-film Weyl semimetals

366   0   0.0 ( 0 )
 Added by Tomohiro Tamaya
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

We theoretically investigate surface plasmon polaritons propagating in the thin-film Weyl semimetals. We show how the properties of surface plasmon polaritons are affected by hybridization between plasmons localized at the two metal-dielectric interfaces. Generally, this hybridization results in new mixed plasmon modes, which are called short-range surface plasmons and long-range surface plasmons, respectively. We calculate dispersion curves of these mixed modes for three principle configurations of the axion vector describing axial anomaly in Weyl semimetals. We show that the partial lack of the dispersion and the non-reciprocity can be controlled by fine-tuning of the thickness of the Weyl semimetals, the dielectric constants of the outer insulators, and the direction of the axion vector.

rate research

Read More

Surface plasmon polaritons in a strained slab of a Weyl semimetal with broken time-reversal symmetry are investigated. It is found that the strain-induced axial gauge field reduces frequencies of these collective modes for intermediate values of the wave vector. Depending on the relative orientation of the separation of Weyl nodes in momentum space, the surface normal, and the direction of propagation, the dispersion relation of surface plasmon polaritons could be nonreciprocal even in a thin slab. In addition, strain-induced axial gauge fields can significantly affect the localization properties of the collective modes. These effects allow for an in situ control of the propagation of surface plasmon polaritons in Weyl semimetals and might be useful for creating nonreciprocal devices.
In a slab geometry with large surface-to-bulk ratio, topological surface states such as Fermi arcs for Weyl or Dirac semimetals may dominate their low-energy properties. We investigate the collective charge oscillations in such systems, finding striking differences between Weyl and conventional electronic systems. Our results, obtained analytically and verified numerically, predict that the Weyl semimetal thin-film host a single $omegapropto sqrt{q}$ plasmon mode, that results from collective, anti-symmetric charge oscillations of between the two surfaces, in stark contrast to conventional 2D bi-layers as well as Dirac semimetals with Fermi arcs, which support anti-symmetric acoustic modes along with a symmetric optical mode. These modes lie in the gap of the particle-hole continuum and are thus spectroscopically observable and potentially useful in plasmonic applications.
An exotic anomalous plasmon mode is found in strained Weyl semimetals utilizing the topological Landau Fermi liquid and chiral kinetic theories, in which quasiparticle interactions are modeled by long-range Coulomb and residual short-range interactions. The gapped collective mode is derived from the dynamical charge pumping between the bulk and the surface and behaves like $k_{rm F}^{-1}$. The charge oscillations are accurately determined by the coupling between the induced electric field and the background pseudofields. This novel mode unidirectionally disperses along the pseudomagnetic field and manifests itself in an unusual thermal conductivity in apparent violation of the Wiedemann-Franz law. The excitation can be achieved experimentally by mechanical vibrations of the crystal lattice in the THz regime.
We show that the thin films of Weyl semimetals have a regime of parameters in which they develop very flat Landau bands under strong magnetic fields. Addressing the case of thin films in a perpendicular magnetic field, we observe that two different types of Landau states may arise depending on whether the line connecting a pair of opposite Weyl nodes is parallel or perpendicular to the direction of the magnetic field. In the latter instance, we show that the flat Landau bands are made of states peaked at the two faces of the thin film. When the line connecting the Weyl nodes is parallel to the magnetic field, we see instead that the states in the Landau bands take the form of stationary waves with significant amplitude across the bulk of the material. In either case, the states in the flat levels are confined along longitudinal sections of the thin film, turning into edge states with distinctive profiles at the lateral boundaries for the two different types of Hall effect.
The Fermi surface of a conventional two-dimensional electron gas is equivalent to a circle, up to smooth deformations that preserve the orientation of the equi-energy contour. Here we show that a Weyl semimetal confined to a thin film with an in-plane magnetization and broken spatial inversion symmetry can have a topologically distinct Fermi surface that is twisted into a $mbox{figure-8}$ $-$ opposite orientations are coupled at a crossing which is protected up to an exponentially small gap. The twisted spectral response to a perpendicular magnetic field $B$ is distinct from that of a deformed Fermi circle, because the two lobes of a mbox{figure-8} cyclotron orbit give opposite contributions to the Aharonov-Bohm phase. The magnetic edge channels come in two counterpropagating types, a wide channel of width $beta l_m^2propto 1/B$ and a narrow channel of width $l_mpropto 1/sqrt B$ (with $l_m=sqrt{hbar/eB}$ the magnetic length and $beta$ the momentum separation of the Weyl points). Only one of the two is transmitted into a metallic contact, providing unique magnetotransport signatures.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا