Do you want to publish a course? Click here

Gaussian-weighted Parton Quasi-distribution

168   0   0.0 ( 0 )
 Added by Jianhui Zhang
 Publication date 2017
  fields
and research's language is English




Ask ChatGPT about the research

We propose a revised definition of quasi-distributions within the framework of large-momentum effective theory (LaMET) that improves convergence towards the large-momentum limit. Since the definition of quasi-distributions is not unique, each choice goes along with a specific matching function, we can use this freedom to optimize convergence towards the large-momentum limit. As an illustration, we study quasi-distributions with a Gaussian weighting factor that naturally suppresses long-range correlations, which are plagued by artifacts. This choice has the advantage that the matching functions can be trivially obtained from the known ones. We apply the Gaussian weighting to the previously published results for the nonperturbatively renormalized unpolarized quark distribution, and find that the unphysical oscillatory behavior is significantly reduced.



rate research

Read More

Extracting parton distribution functions (PDFs) from lattice QCD calculation of quasi-PDFs has been actively pursued in recent years. We extend our proof of the multiplicative renormalizability of quasi-quark operators in Ref. [1] to quasi-gluon operators, and demonstrated that quasi-gluon operators could be multiplicatively renormalized to all orders in perturbation theory, without mixing with other operators. We find that using a gauge-invariant UV regulator is essential for achieving this proof. With the multiplicative renormalizability of both quasi-quark and quasi-gluon operators, and QCD collinear factorization of hadronic matrix elements of there operators into PDFs, extracting PDFs from lattice QCD calculated hadronic matrix elements of quasi-parton operators could have a solid theoretical foundation.
163 - Anatoly Radyushkin 2018
We discuss the structure of the parton quasi-distributions (quasi-PDFs) $Q(y, P_3)$ outside the canonical $-1 leq y leq 1$ support region of the usual parton distribution functions (PDFs). Writing the $y^n$ moments of $Q(y, P_3)$ in terms of the combined $x^{n-2l} k_perp^{2l}$-moments of the transverse momentum distribution (TMD) ${cal F} (x,k_perp^2)$, we establish a connection between the large-$|y|$ behavior of $Q(y,P_3)$ and large-$k_perp^2$ behavior of ${cal F} (x,k_perp^2)$. In particular, we show that the $1/k_perp^2$ hard tail of TMDs in QCD results in a slowly decreasing $sim 1/|y|$ behavior of quasi-PDFs for large $|y|$ that produces infinite $y^n$ moments of $Q(y,P_3)$. We also relate the $sim 1/|y|$ terms with the $ln z_3^2$-singulariies of the Ioffe-time pseudo-distributions $mathfrak{M} ( u, z_3^2)$. Converting the operator product expansion for $mathfrak{M} ( u, z_3^2)$ into a matching relation between the quasi-PDF $Q(y,P_3)$ and the light-cone PDF $f(x, mu^2)$, we demonstrate that there is no contradiction between the infinite values of the $y^n$ moments of $Q(y,P_3)$ and finite values of the $x^n$ moments of $f(x, mu^2)$.
Recently the concept of quasi parton distributions (quasi-PDFs) for hadrons has been proposed. Quasi-PDFs are defined through spatial correlation functions and as such can be computed numerically using quantum chromodynamics on a four-dimensional lattice. As the hadron momentum is increased, the quasi-PDFs converge to the corresponding standard PDFs that appear in factorization theorems for many high-energy scattering processes. Here we investigate this new concept in the case of generalized parton distributions (GPDs) by calculating the twist-2 vector GPDs in the scalar diquark spectator model. For infinite hadron momentum, the analytical results of the quasi-GPDs agree with those of the standard GPDs. Our main focus is to examine how well the quasi-GPDs agree with the standard GPDs for finite hadron momenta. We also study the sensitivity of the results on the parameters of the model. In general, our model calculation suggests that quasi-GPDs could be a viable tool for getting information about standard GPDs.
In this letter, we investigate the nucleon quasi-parton distribution functions in the chiral quark soliton model. We derive a set of sum-rules depending on the velocity of the nucleon and on the Dirac matrix defining the distribution functions. We present numerical results for the isosinglet unpolarized distribution, in which we find that the anti-quark distribution breaks the positivity condition at nucleon velocities $vapprox 0.99;(P_Napprox 7.0 M_N)$ and smaller. We found that, for the isosinglet unpolarized case, a large nucleon momentum is required for the quasi-parton distribution to get close enough to the usual parton distribution function.
116 - Keh-Fei Liu 2016
The path-integral formulation of the hadronic tensor W_{mu u} of deep inelastic scattering is reviewed. It is shown that there are 3 gauge invariant and topologically distinct contributions. The separation of the connected sea partons from those of the disconnected sea can be achieved with a combination of the global fit of the parton distribution function (PDF), the semi-inclusive DIS data on the strange PDF and the lattice calculation of the ratio of the strange to $u/d$ momentum fraction in the disconnected insertion. We shall discuss numerical issues associated with lattice calculation of the hadronic tensor involving a four-point function, such as large hadron momenta and improved maximum entropy method to obtain the spectral density from the hadronic tensor in Euclidean time. We also draw a comparison between the large momentum approach to the parton distribution function (PDF) and the hadronic tensor approach.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا