Do you want to publish a course? Click here

Generalized quasi parton distributions in a diquark spectator model

66   0   0.0 ( 0 )
 Added by Andreas Metz
 Publication date 2018
  fields
and research's language is English




Ask ChatGPT about the research

Recently the concept of quasi parton distributions (quasi-PDFs) for hadrons has been proposed. Quasi-PDFs are defined through spatial correlation functions and as such can be computed numerically using quantum chromodynamics on a four-dimensional lattice. As the hadron momentum is increased, the quasi-PDFs converge to the corresponding standard PDFs that appear in factorization theorems for many high-energy scattering processes. Here we investigate this new concept in the case of generalized parton distributions (GPDs) by calculating the twist-2 vector GPDs in the scalar diquark spectator model. For infinite hadron momentum, the analytical results of the quasi-GPDs agree with those of the standard GPDs. Our main focus is to examine how well the quasi-GPDs agree with the standard GPDs for finite hadron momenta. We also study the sensitivity of the results on the parameters of the model. In general, our model calculation suggests that quasi-GPDs could be a viable tool for getting information about standard GPDs.



rate research

Read More

Quasi parton distributions (quasi-PDFs) are currently under intense investigation. Quasi-PDFs are defined through spatial correlation functions and are thus accessible in lattice QCD. They gradually approach their corresponding standard (light-cone) PDFs as the hadron momentum increases. Recently, we investigated the concept of quasi-distributions in the case of generalized parton distributions (GPDs) by calculating the twist-2 vector GPDs in the scalar diquark spectator model. In the present work, we extend this study to the remaining six leading-twist GPDs. For large hadron momenta, all quasi-GPDs analytically reduce to the corresponding standard GPDs. We also study the numerical mismatch between quasi-GPDs and standard GPDs for finite hadron momenta. Furthermore, we present results for quasi-PDFs, and explore higher-twist effects associated with the parton momentum and the longitudinal momentum transfer to the target. We study the dependence of our results on the model parameters as well as the type of diquark. Finally, we discuss the lowest moments of quasi distributions, and elaborate on the relation between quasi-GPDs and the total angular momentum of quarks. The moment analysis suggests a preferred definition of several quasi-distributions.
95 - Anatoly Radyushkin 2019
We derive one-loop matching relations for the Ioffe-time distributions related to the pion distribution amplitude (DA) and generalized parton distributions (GPDs). They are obtained from a universal expression for the one-loop correction in an operator form, and will be used in the ongoing lattice calculations of the pion DA and GPDs based on the parton pseudo-distributions approach.
163 - Anatoly Radyushkin 2018
We discuss the structure of the parton quasi-distributions (quasi-PDFs) $Q(y, P_3)$ outside the canonical $-1 leq y leq 1$ support region of the usual parton distribution functions (PDFs). Writing the $y^n$ moments of $Q(y, P_3)$ in terms of the combined $x^{n-2l} k_perp^{2l}$-moments of the transverse momentum distribution (TMD) ${cal F} (x,k_perp^2)$, we establish a connection between the large-$|y|$ behavior of $Q(y,P_3)$ and large-$k_perp^2$ behavior of ${cal F} (x,k_perp^2)$. In particular, we show that the $1/k_perp^2$ hard tail of TMDs in QCD results in a slowly decreasing $sim 1/|y|$ behavior of quasi-PDFs for large $|y|$ that produces infinite $y^n$ moments of $Q(y,P_3)$. We also relate the $sim 1/|y|$ terms with the $ln z_3^2$-singulariies of the Ioffe-time pseudo-distributions $mathfrak{M} ( u, z_3^2)$. Converting the operator product expansion for $mathfrak{M} ( u, z_3^2)$ into a matching relation between the quasi-PDF $Q(y,P_3)$ and the light-cone PDF $f(x, mu^2)$, we demonstrate that there is no contradiction between the infinite values of the $y^n$ moments of $Q(y,P_3)$ and finite values of the $x^n$ moments of $f(x, mu^2)$.
In this letter, we investigate the nucleon quasi-parton distribution functions in the chiral quark soliton model. We derive a set of sum-rules depending on the velocity of the nucleon and on the Dirac matrix defining the distribution functions. We present numerical results for the isosinglet unpolarized distribution, in which we find that the anti-quark distribution breaks the positivity condition at nucleon velocities $vapprox 0.99;(P_Napprox 7.0 M_N)$ and smaller. We found that, for the isosinglet unpolarized case, a large nucleon momentum is required for the quasi-parton distribution to get close enough to the usual parton distribution function.
We show how the double parton distributions may be obtained consistently from the many-body light-cone wave functions. We illustrate the method on the example of the pion with two Fock components. The procedure, by construction, satisfies the Gaunt-Stirling sum rules. The resulting single parton distributions of valence quarks and gluons are consistent with a phenomenological parametrization at a low scale.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا