Do you want to publish a course? Click here

Robust quantum state transfer via topological edge states in superconducting qubit chains

100   0   0.0 ( 0 )
 Added by Feng Mei Dr
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

Robust quantum state transfer (QST) is an indispensable ingredient in scalable quantum information processing. Here we present an experimentally feasible mechanism for realizing robust QST via topologically protected edge states in superconducting qubit chains. Using superconducting Xmon qubits with tunable couplings, we construct generalized Su-Schrieffer-Heeger models and analytically derive the wave functions of topological edge states. We find that such edge states can be employed as a quantum channel to realize robust QST between remote qubits. With a numerical simulation, we show that both single-qubit states and two-qubit entangled states can be robustly transferred in the presence of sizable imperfections in the qubit couplings. The transfer fidelity demonstrates a wide plateau at the value of unity in the imperfection magnitude. This approach is general and can be implemented in a variety of quantum computing platforms.

rate research

Read More

The transfer of an unknown quantum state, from a sender to a receiver, is one of the main requirements to perform quantum information processing tasks. In this respect, the state transfer of a single qubit by means of spin chains has been widely discussed, and many protocols aiming at performing this task have been proposed. Nevertheless, the state transfer of more than one qubit has not been properly addressed so far. In this paper, we present a modified version of a recently proposed quantum state transfer protocol [Phys. Rev. A 87, 062309 (2013)] to obtain a quantum channel for the transfer of two qubits. This goal is achieved by exploiting Rabi-like oscillations due to excitations induced by means of strong and localized magnetic fields. We derive exact analytical formulae for the fidelity of the quantum state transfer, and obtain a high-quality transfer for general quantum states as well as for specific classes of states relevant for quantum information processing.
We propose a fast and robust quantum state transfer protocol employing a Su-Schrieffer-Heeger chain, where the interchain couplings vary in time. Based on simple considerations around the terms involved in the definition of the adiabatic invariant, we construct an exponential time-driving function that successfully takes advantage of resonant effects to speed up the transfer process. Using optimal control theory, we confirm that the proposed time-driving function is close to optimal. To unravel the crucial aspects of our construction, we proceed to a comparison with two other protocols. One where the underlying Su-Schrieffer-Heeger chain is adiabatically time-driven and another where the underlying chain is topologically trivial and resonant effects are at work. By numerically investigating the resilience of each protocol to static noise, we highlight the robustness of the exponential driving.
93 - Feng Mei , Gang Chen , Lin Tian 2019
We propose a protocol using a tunable Xmon qubit chain to construct generalized Su-Schrieffer-Heeger (SSH) models that support various topological phases. We study the time evolution of a single-excitation quantum state in a SSH-type qubit chain and find that such dynamics is linked to topological winding number. We also investigate the adiabatic transfer of a single-excitation quantum state in a generalized SSH-type qubit chain and show that this process can be connected with topological Chern number and be used to generate a novel entanglement-dependent topological pumping. All results have been demonstrated to be robust against qubit coupling imperfections and can be observed in a short Xmon qubit chain. Our study provides a simple method to directly measure topological invariants rooted in momentum space using quantum dynamics in real space.
99 - Lupei Qin , Luting Xu , Wei Feng 2016
The standard method of measuring quantum wavefunction is the technique of {it indirect} quantum state tomography. Owing to conceptual novelty and possible advantages, an alternative {it direct} scheme was proposed and demonstrated recently in quantum optics system. In this work we present a study on the direct scheme of measuring qubit state in the circuit QED system, based on weak measurement and weak value concepts. To be applied to generic parameter conditions, our formulation and analysis are carried out for finite strength weak measurement, and in particular beyond the bad-cavity and weak-response limits. The proposed study is accessible to the present state-of-the-art circuit-QED experiments.
We investigate the fidelity of the quantum state transfer (QST) of two qubits by means of an arbitrary spin-1/2 network, on a lattice of any dimensionality. Under the assumptions that the network Hamiltonian preserves the magnetization and that a fully polarized initial state is taken for the lattice, we obtain a general formula for the average fidelity of the two qubits QST, linking it to the one- and two-particle transfer amplitudes of the spin-excitations among the sites of the lattice. We then apply this formalism to a 1D spin chain with XX-Heisenberg type nearest-neighbour interactions adopting a protocol that is a generalization of the single qubit one proposed in Ref. [Phys. Rev. A 87, 062309 (2013)]. We find that a high-quality two qubit QST can be achieved provided one can control the local fields at sites near the sender and receiver. Under such conditions, we obtain an almost perfect transfer in a time that scales either linearly or, depending on the spin number, quadratically with the length of the chain.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا