No Arabic abstract
One of the most remarkable properties of the nitrogen-vacancy (NV) center in diamond is that optical illumination initializes its electronic spin almost completely, a feature that can be exploited to polarize other spin species in their proximity. Here we use field-cycled nuclear magnetic resonance (NMR) to investigate the mechanisms of spin polarization transfer from NVs to 13C spins in diamond at room temperature. We focus on the dynamics near 51 mT, where a fortuitous combination of energy matching conditions between electron and nuclear spin levels gives rise to alternative polarization transfer channels. By monitoring the 13C spin polarization as a function of the applied magnetic field, we show 13C spin pumping takes place via a multi-spin cross relaxation process involving the NV- spin and the electronic and nuclear spins of neighboring P1 centers. Further, we find that this mechanism is insensitive to the crystal orientation relative to the magnetic field, although the absolute level of 13C polarization - reaching up to ~3% under optimal conditions - can vary substantially depending on the interplay between optical pumping efficiency, photo-generated carriers, and laser-induced heating.
The Nitrogen-Vacancy (NV) center in diamond has attractive properties for a number of quantum technologies that rely on the spin angular momentum of the electron and the nuclei adjacent to the center. The nucleus with the strongest interaction is the $^{13}$C nuclear spin of the first shell. Using this degree of freedom effectively hinges on precise data on the hyperfine interaction between the electronic and the nuclear spin. Here, we present detailed experimental data on this interaction, together with an analysis that yields all parameters of the hyperfine tensor, as well as its orientation with respect to the atomic structure of the center.
Color-center-hosting semiconductors are emerging as promising source materials for low-field dynamic nuclear polarization (DNP) at or near room temperature, but hyperfine broadening, susceptibility to magnetic field heterogeneity, and nuclear spin relaxation induced by other paramagnetic defects set practical constraints difficult to circumvent. Here, we explore an alternate route to color-center-assisted DNP using nitrogen-vacancy (NV) centers in diamond coupled to substitutional nitrogen impurities, the so-called P1 centers. Working near the level anti-crossing condition - where the P1 Zeeman splitting matches one of the NV spin transitions - we demonstrate efficient microwave-free 13C DNP through the use of consecutive magnetic field sweeps and continuous optical excitation. The amplitude and sign of the polarization can be controlled by adjusting the low-to-high and high-to-low magnetic field sweep rates in each cycle so that one is much faster than the other. By comparing the 13C DNP response for different crystal orientations, we show that the process is robust to magnetic field/NV misalignment, a feature that makes the present technique suitable to diamond powders and settings where the field is heterogeneous. Applications to shallow NVs could capitalize on the greater physical proximity between surface paramagnetic defects and outer nuclei to efficiently polarize target samples in contact with the diamond crystal.
We report a versatile method to efficiently polarize single nuclear spins in diamond, which is based on optical pumping of a single NV color center and mediated by a level-anti crossing in its excited state. A nuclear spin polarization higher than 98% is achieved at room temperature for the 15N nuclear spin associated to the NV center, corresponding to $mu$K effective nuclear spin temperature. We then show simultaneous deterministic initialization of two nuclear spins (13C and 15N) in close vicinity to a NV defect. Such robust control of nuclear spin states is a key ingredient for further scaling up of nuclear-spin based quantum registers in diamond.
We demonstrate operation of a rotation sensor based on the $^{14}$N nuclear spins intrinsic to nitrogen-vacancy (NV) color centers in diamond. The sensor employs optical polarization and readout of the nuclei and a radio-frequency double-quantum pulse protocol that monitors $^{14}$N nuclear spin precession. This measurement protocol suppresses the sensitivity to temperature variations in the $^{14}$N quadrupole splitting, and it does not require microwave pulses resonant with the NV electron spin transitions. The device was tested on a rotation platform and demonstrated a sensitivity of 4.7 $^{circ}/sqrt{rm{s}}$ (13 mHz/$sqrt{rm{Hz}}$), with bias stability of 0.4 $^{circ}$/s (1.1 mHz).
We studied the dynamic nuclear spin polarization of nitrogen in negatively charged nitrogen-vacancy (NV) centers in diamond both experimentally and theoretically over a wide range of magnetic fields from 0 to 1100 G covering both the excited-state level anti-crossing and the ground-state level anti-crossing magnetic field regions. Special attention was paid to the less studied ground-state level anti-crossing region. The nuclear spin polarization was inferred from measurements of the optically detected magnetic resonance signal. These measurements show that a very large (up to $96 pm 2%$) nuclear spin polarization of nitrogen can be achieved over a very broad range of magnetic field starting from around 400 G up to magnetic field values substantially exceeding the ground-state level anti-crossing at 1024 G. We measured the influence of angular deviations of the magnetic field from the NV axis on the nuclear spin polarization efficiency and found that, in the vicinity of the ground-state level anti-crossing, the nuclear spin polarization is more sensitive to this angle than in the vicinity of the excited-state level anti-crossing. Indeed, an angle as small as a tenth of a degree of arc can destroy almost completely the spin polarization of a nitrogen nucleus. In addition, we investigated theoretically the influence of strain and optical excitation power on the nuclear spin polarization.