No Arabic abstract
Presently, one of the most ambitious technological goals is the development of devices working under the laws of quantum mechanics. One prominent target is the quantum computer, which would allow the processing of information at quantum level for purposes not achievable with even the most powerful computer resources. The large-scale implementation of quantum information would be a game changer for current technology, because it would allow unprecedented parallelised computation and secure encryption based on the principles of quantum superposition and entanglement. Currently, there are several physical platforms racing to achieve the level of performance required for the quantum hardware to step into the realm of practical quantum information applications. Several materials have been proposed to fulfil this task, ranging from quantum dots, Bose-Einstein condensates, spin impurities, superconducting circuits, molecules, amongst others. Magnetic molecules are among the list of promising building blocks, due to (i) their intrinsic monodispersity, (ii) discrete energy levels (iii) the possibility of chemical quantum state engineering, and (iv) their multilevel characteristics, leading to the so called Qudits (d > 2), amongst others. Herein we review how a molecular multilevel nuclear spin qubit (or qudit, where d = 4), known as TbPc2, gathers all the necessary requirements to perform as a molecular hardware platform with a first generation of molecular devices enabling even quantum algorithm operations.
We show that molecular spin qudits provide an ideal platform to simulate the quantum dynamics of photon fields strongly interacting with matter. The basic unit of the proposed molecular quantum simulator can be realized by a simple dimer of a spin 1/2 and a spin $S$ transition metal ion, solely controlled by microwave pulses. The spin $S$ ion is exploited to encode the photon field in a flexible architecture, which enables the digital simulation of a wide range of spin-boson models much more efficiently than by using a multi-qubit register. The effectiveness of our proposal is demonstrated by numerical simulations using realistic molecular parameters, whose prerequisites delineating possible chemical approaches are also discussed.
This paper presents a hybrid classical-quantum program for density estimation and supervised classification. The program is implemented as a quantum circuit in a high-dimensional quantum computer simulator. We show that the proposed quantum protocols allow to estimate probability density functions and to make predictions in a supervised learning manner. This model can be generalized to find expected values of density matrices in high-dimensional quantum computers. Experiments on various data sets are presented. Results show that the proposed method is a viable strategy to implement supervised classification and density estimation in a high-dimensional quantum computer.
We present a suite of holographic quantum algorithms for efficient ground-state preparation and dynamical evolution of correlated spin-systems, which require far-fewer qubits than the number of spins being simulated. The algorithms exploit the equivalence between matrix-product states (MPS) and quantum channels, along with partial measurement and qubit re-use, in order to simulate a $D$-dimensional spin system using only a ($D$-1)-dimensional subset of qubits along with an ancillary qubit register whose size scales logarithmically in the amount of entanglement present in the simulated state. Ground states can either be directly prepared from a known MPS representation, or obtained via a holographic variational quantum eigensolver (holoVQE). Dynamics of MPS under local Hamiltonians for time $t$ can also be simulated with an additional (multiplicative) ${rm poly}(t)$ overhead in qubit resources. These techniques open the door to efficient quantum simulation of MPS with exponentially large bond-dimension, including ground-states of 2D and 3D systems, or thermalizing dynamics with rapid entanglement growth. As a demonstration of the potential resource savings, we implement a holoVQE simulation of the antiferromagnetic Heisenberg chain on a trapped-ion quantum computer, achieving within $10(3)%$ of the exact ground-state energy of an infinite chain using only a pair of qubits.
Quantum state tomography (QST) is an essential tool for characterizing an unknown quantum state. Recently, QST has been performed for entangled qudits based on orbital angular momentum, time-energy uncertainty, and frequency bins. Here, we propose a QST for time-bin qudits, with which the number of measurement settings scales linearly with dimension $d$. Using the proposed scheme, we performed QST for a four-dimensional time-bin maximally entangled state with 16 measurement settings. We successfully reconstructed the density matrix of the entangled qudits, with which the average fidelity of the state was calculated to be 0.950.
We present elementary mappings between classical lattice models and quantum circuits. These mappings provide a general framework to obtain efficiently simulable quantum gate sets from exactly solvable classical models. For example, we recover and generalize the simulability of Valiants match-gates by invoking the solvability of the free-fermion eight-vertex model. Our mappings furthermore provide a systematic formalism to obtain simple quantum algorithms to approximate partition functions of lattice models in certain complex-parameter regimes. For example, we present an efficient quantum algorithm for the six-vertex model as well as a 2D Ising-type model. We finally show that simulating our quantum algorithms on a classical computer is as hard as simulating universal quantum computation (i.e. BQP-complete).