No Arabic abstract
We present an extensive numerical study of the time irreversibility of the dynamics of heavy inertial particles in three-dimensional, statistically homogeneous and isotropic turbulent flows. We show that the probability density function (PDF) of the increment, $W(tau)$, of a particles energy over a time-scale $tau$ is non-Gaussian, and skewed towards negative values. This implies that, on average, particles gain energy over a period of time that is longer than the duration over which they lose energy. We call this $textit{slow gain}$ and $textit{fast loss}$. We find that the third moment of $W(tau)$ scales as $tau^3$, for small values of $tau$. We show that the PDF of power-input $p$ is negatively skewed too; we use this skewness ${rm Ir}$ as a measure of the time-irreversibility and we demonstrate that it increases sharply with the Stokes number ${rm St}$, for small ${rm St}$; this increase slows down at ${rm St} simeq 1$. Furthermore, we obtain the PDFs of $t^+$ and $t^-$, the times over which $p$ has, respectively, positive or negative signs, i.e., the particle gains or loses energy. We obtain from these PDFs a direct and natural quantification of the the slow-gain and fast-loss of the particles, because these PDFs possess exponential tails, whence we infer the characteristic loss and gain times $t_{rm loss}$ and $t_{rm gain}$, respectively; and we obtain $t_{rm loss} < t_{rm gain}$, for all the cases we have considered. Finally, we show that the slow-gain in energy of the particles is equally likely in vortical or strain-dominated regions of the flow; in contrast, the fast-loss of energy occurs with greater probability in the latter than in the former.
Recently, in Zhang et al. (2020), it was found that in rapidly rotating turbulent Rayleigh-Benard convection (RBC) in slender cylindrical containers (with diameter-to-height aspect ratio $Gamma=1/2$) filled with a small-Prandtl-number fluid ($Pr approx0.8$), the Large Scale Circulation (LSC) is suppressed and a Boundary Zonal Flow (BZF) develops near the sidewall, characterized by a bimodal PDF of the temperature, cyclonic fluid motion, and anticyclonic drift of the flow pattern (with respect to the rotating frame). This BZF carries a disproportionate amount ($>60%$) of the total heat transport for $Pr < 1$ but decreases rather abruptly for larger $Pr$ to about $35%$. In this work, we show that the BZF is robust and appears in rapidly rotating turbulent RBC in containers of different $Gamma$ and in a broad range of $Pr$ and $Ra$. Direct numerical simulations for $0.1 leq Pr leq 12.3$, $10^7 leq Ra leq 5times10^{9}$, $10^{5} leq 1/Ek leq 10^{7}$ and $Gamma$ = 1/3, 1/2, 3/4, 1 and 2 show that the BZF width $delta_0$ scales with the Rayleigh number $Ra$ and Ekman number $Ek$ as $delta_0/H sim Gamma^{0} Pr^{{-1/4, 0}} Ra^{1/4} Ek^{2/3}$ (${Pr<1, Pr>1}$) and the drift frequency as $omega/Omega sim Gamma^{0} Pr^{-4/3} Ra Ek^{5/3}$, where $H$ is the cell height and $Omega$ the angular rotation rate. The mode number of the BZF is 1 for $Gamma lesssim 1$ and $2 Gamma$ for $Gamma$ = {1,2} independent of $Ra$ and $Pr$. The BZF is quite reminiscent of wall mode states in rotating convection.
The long time dynamics of large particles trapped in two inhomogeneous turbulent shear flows is studied experimentally. Both flows present a common feature, a shear region that separates two colliding circulations, but with different spatial symmetries and temporal behaviors. Because large particles are less and less sensitive to flow fluctuations as their size increases, we observe the emergence of a slow dynamics corresponding to back-and-forth motions between two attractors, and a super-slow regime synchronized with flow reversals when they exist. Such dynamics is substantially reproduced by a one dimensional stochastic model of an over-damped particle trapped in a two-well potential, forced by a colored noise. An extended model is also proposed that reproduces observed dynamics and trapping without potential barrier: the key ingredient is the ratio between the time scales of the noise correlation and the particle dynamics. A total agreement with experiments requires the introduction of spatially inhomogeneous fluctuations and a suited confinement strength.
We use direct numerical simulations to calculate the joint probability density function of the relative distance $R$ and relative radial velocity component $V_R$ for a pair of heavy inertial particles suspended in homogeneous and isotropic turbulent flows. At small scales the distribution is scale invariant, with a scaling exponent that is related to the particle-particle correlation dimension in phase space, $D_2$. It was argued [1, 2] that the scale invariant part of the distribution has two asymptotic regimes: (1) $|V_R| ll R$ where the distribution depends solely on $R$; and (2) $|V_R| gg R$ where the distribution is a function of $|V_R|$ alone. The probability distributions in these two regimes are matched along a straight line $|V_R| = z^ast R$. Our simulations confirm that this is indeed correct. We further obtain $D_2$ and $z^ast$ as a function of the Stokes number, ${rm St}$. The former depends non-monotonically on ${rm St}$ with a minimum at about ${rm St} approx 0.7$ and the latter has only a weak dependence on ${rm St}$.
Direct numerical simulation is used to investigate effects of turbulent flow in the confined geometry of a face-centered cubic porous unit cell on the transport, clustering, and deposition of fine particles at different Stokes numbers ($St = 0.01, 0.1, 0.5, 1, 2$) and at a pore Reynolds number of 500. Particles are advanced using one-way coupling and collision of particles with pore walls is modeled as perfectly elastic with specular reflection. Tools for studying inertial particle dynamics and clustering developed for homogeneous flows are adapted to take into account the embedded, curved geometry of the pore walls. The pattern and dynamics of clustering are investigated using the volume change of Voronoi tesselation in time to analyze the divergence and convergence of the particles. Similar to the case of homogeneous, isotropic turbulence, the cluster formation is present at large volumes, while cluster destruction is prominent at small volumes and these effects are amplified with Stokes number. However, unlike homogeneous, isotropic turbulence, formation of large number of very small volumes was observed at all Stokes numbers and is attributed to the collision of particles with the pore wall. Multiscale wavelet analysis of the particle number density showed peak of clustering shifts towards larger scales with increase in Stokes number. Scale-dependent skewness and flatness quantify the intermittent void and cluster distribution, with cluster formation observed at small scales for all Stokes numbers, and void regions at large scales for large Stokes numbers.
The statistics of velocity differences between very heavy inertial particles suspended in an incompressible turbulent flow is found to be extremely intermittent. When particles are separated by distances within the viscous subrange, the competition between quiet regular regions and multi-valued caustics leads to a quasi bi-fractal behavior of the particle velocity structure functions, with high-order moments bringing the statistical signature of caustics. Contrastingly, for particles separated by inertial-range distances, the velocity-difference statistics is characterized in terms of a local H{o}lder exponent, which is a function of the scale-dependent particle Stokes number only. Results are supported by high-resolution direct numerical simulations. It is argued that these findings might have implications in the early stage of rain droplets formation in warm clouds.