Do you want to publish a course? Click here

Interface Probing by Dielectric Frequency Dispersion in Carbon Nanocomposites

173   0   0.0 ( 0 )
 Added by Faxiang Qin
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

Interfaces remain one of the major issues in limiting the understanding and designing polymer nanocomposites due to their complexity and pivotal role in determining the ultimate composites properties. In this study, we take multi-walled carbon nanotubes/silicone rubber nanocomposites as a representative example, and have for the first time studied the correlation between high-frequency dielectric dispersion and static/dynamic interfacial characteristics. We have found that the interface together with other meso-structural parameters (volume fraction, dispersion, agglomeration) play decisive role in formulating the dielectric patterns. The calculation of the relaxation times affords the relative importance of interfacial polarization to dipolar polarization in resultant dielectric relaxation. Dielectric measurements coupled with cyclic loading further reveals the remarkable capability of dielectric frequency dispersion in capturing the evolution of interfacial properties, such as a particular interface reconstruction process occurred to the surfactant-modified samples. All these results demonstrate that high-frequency dielectric spectroscopy is instrumental to probing both static and dynamic meso-structural characteristics, especially effective for the composites with relative weak interfaces which remains a mission impossible for many other techniques. The insights provided here based on the analyses of dielectric frequency dispersion will pave the way for optimized design and precise engineering of meso-structure in polymer nanocomposites.



rate research

Read More

Three types of BaTiO3 core - amorphous nano-shell composite ceramics were processed from the same core-shell powder by standard sintering, spark-plasma sintering and two-step sintering techniques and characterized by XRD, HRSEM and broad-band dielectric spectroscopy in the frequency range 10^3 - 10^13 Hz including the THz and IR range. The samples differed by porosity and by the amount of interdiffusion from the cores to shells, in correlation with their increasing porosity. The dielectric spectra were also calculated using suitable models based on effective medium approximation. The measurements revealed a strong dielectric dispersion below the THz range, which cannot be explained by the modeling, and whose strength was in correlation with the degree of interdiffusion. We assigned it to an effect of the interdiffusion layers, giving rise to a strong interfacial polarization. It appears that the high-frequency dielectric spectroscopy is an extremely sensitive tool for detection of any gradient layers and sample inhomogeneities even in dielectric materials with negligible conductivity.
58 - Elisa Passaglia 2017
Polystyrene-based phosphorene nanocomposites were prepared by a solvent blending procedure allowing the embedding of black phosphorus (BP) nanoflakes in the polymer matrix. Raman spectroscopy, X Ray Diffraction and TEM microscopy were employed to characterize the structural and the morphological characteristics of the achieved hybrids, with the aim to evaluate the dispersion level of black phosphorus layers. TGA, DSC analysis as well as thermal oxidation and photo-degradation techniques were employed to investigate the thermal- and the photo-stability of the samples. The collected results evidenced better thermal and photostability of both polymer matrix and dispersed layered phosphorus, suggesting really interesting polymer-nanofiller synergic effects ascribable to the presence and the good dispersion of the 2D-nanomaterial.
In this paper we adopt a processing technology to develop elastomer plus nano-graphite hybrid composites with multifunctional properties. Beyond the improvements of the mechanical properties, the research findings demonstrate the synergistic effect of carbon black and graphite nanoplatelets to prepare rubber composite thermally conductive and to design a new class of shock absorbers. It was found that a critical GNPs/CB ratio was apt to reduce the strong interlayer forces among the GNPs sheets, which led to the efficiency on reinforcement in mechanical properties and improvements of the performance of the rubber composites.
The breakdown of translational symmetry at heterointerfaces leads to the emergence of new phonon modes localized near the interface. These interface phonons play an essential role in thermal/electrical transport properties in devices especially in miniature ones wherein the interface may dominate the entire response of the device. Knowledge of phonon dispersion at interfaces is therefore highly desirable for device design and optimization. Although theoretical work has begun decades ago, experimental research is totally absent due to challenges in achieving combined spatial, momentum and spectral resolutions required to probe localized phonon modes. Here we use electron energy loss spectroscopy in an electron microscope to directly measure both the local phonon density of states and the interface phonon dispersion relation for an epitaxial cBN-diamond heterointerface. In addition to bulk phonon modes, we observe acoustic and optical phonon modes localized at the interface, and modes isolated away from the interface. These features only appear within ~ 1 nm around the interface. The experimental results can be nicely reproduced by ab initio calculations. Our findings provide insights into lattice dynamics at heterointerfaces and should be practically useful in thermal/electrical engineering.
The optoelectronic properties of nanoscale systems such as carbon nanotubes (CNTs), graphene nanoribbons and transition metal dichalcogenides (TMDCs) are determined by their dielectric function. This complex, frequency dependent function is affected by excitonic resonances, charge transfer effects, doping, sample stress and strain, and surface roughness. Knowledge of the dielectric function grants access to a materials transmissive and absorptive characteristics. Here we introduce the dual scanning near field optical microscope (dual s-SNOM) for imaging local dielectric variations and extracting dielectric function values using a mathematical inversion method. To demonstrate our approach, we studied a monolayer of WS$_2$ on bulk Au and identified two areas with differing levels of charge transfer. Our measurements are corroborated by atomic force microscopy (AFM), Kelvin force probe microscopy (KPFM), photoluminescence (PL) intensity mapping, and tip enhanced photoluminescence (TEPL). We extracted local dielectric variations from s-SNOM images and confirmed the reliability of the obtained values with spectroscopic imaging ellipsometry (SIE) measurements.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا