Do you want to publish a course? Click here

Measuring the effects of General Relativity at the Galactic Center with Future Extremely Large Telescopes

80   0   0.0 ( 0 )
 Added by Tuan Do
 Publication date 2017
  fields Physics
and research's language is English
 Authors Tuan Do




Ask ChatGPT about the research

The Galactic center offers us a unique opportunity to test General Relativity (GR) with the orbits of stars around a supermassive black hole. Observations of these stars have been one of the great successes of adaptive optics on 8-10 m telescopes, driving the need for the highest angular resolution and astrometric precision. New tests of gravitational physics in the strong gravity regime with stellar orbits will be made possible through the leap in angular resolution and sensitivity from the next generation of extremely large ground-based telescopes. We present new simulations of specific science cases such as the detection of the GR precession of stars, the measurement of extended dark mass, and the distance to the Galactic center. We use realistic models of the adaptive optics system for TMT and the IRIS instrument to simulate these science cases. In additions, the simulations include observational issues such as the impact of source confusion on astrometry and radial velocities in the dense environment of the Galactic center. We qualitatively show how improvements in sensitivity, astrometric and spectroscopic precision, and increasing the number of stars affect the science with orbits at the Galactic center. We developed a tool to determine the constraints on physical models using a joint fit of over 100 stars that are expected to be observable with TMT. These science cases require very high astrometric precision and stability, thus they provide some of the most stringent constraints on the planned instruments and adaptive optics systems.



rate research

Read More

The next generation of giant-segmented mirror telescopes ($>$ 20 m) will enable us to observe galactic nuclei at much higher angular resolution and sensitivity than ever before. These capabilities will introduce a revolutionary shift in our understanding of the origin and evolution of supermassive black holes by enabling more precise black hole mass measurements in a mass range that is unreachable today. We present simulations and predictions of the observations of nuclei that will be made with the Thirty Meter Telescope (TMT) and the adaptive optics assisted integral-field spectrograph IRIS, which is capable of diffraction-limited spectroscopy from $Z$ band (0.9 $mu$m) to $K$ band (2.2 $mu$m). These simulations, for the first time, use realistic values for the sky, telescope, adaptive optics system, and instrument, to determine the expected signal-to-noise ratio of a range of possible targets spanning intermediate mass black holes of $sim10^4$ msun to the most massive black holes known today of $>10^{10}$ $M_odot$. We find that IRIS will be able to observe Milky Way-mass black holes out the distance of the Virgo cluster, and will allow us to observe many more brightest cluster galaxies where the most massive black holes are thought to reside. We also evaluate how well the kinematic moments of the velocity distributions can be constrained at the different spectral resolutions and plate scales designed for IRIS. We find that a spectral resolution of $sim8000$ will be necessary to measure the masses of intermediate mass black holes. By simulating the observations of galaxies found in SDSS DR7, we find that over $10^5$ massive black holes will be observable at distances between $0.005 < z < 0.18$ with the estimated sensitivity and angular resolution provided by access to $Z$-band (0.9 $mu$m) spectroscopy from IRIS and the TMT adaptive optics system. (Abridged)
154 - Yun Fang 2020
S-stars in the Galactic Center are excellent testbeds of various general relativistic effects. While previous works focus on modeling their orbital motion around Sgr A*--the supermassive black hole in the Galactic Center--here we explore the possibility of using the rotation of S-stars to test the de Sitter precession predicted by general relativity. We show that by reorienting the rotation axes of S-stars, de Sitter precession will change the apparent width of the absorption lines in the stellar spectra. Our numerical simulations suggest that the newly discovered S4714 and S62 are best suited for such a test because of their small pericenter distances relative to Sgr A*. Depending on the initial inclination of the star, the line width would vary by as much as $20-76,{rm km,s^{-1}}$ within a period of $20-40$ years. Such a variation is comparable to the current detection limit. Since the precession rate is sensitive to the orbital eccentricity and stellar quadrupole structure, monitoring the rotation of S-stars could also help us better constrain the orbital elements of the S-stars and their internal structures.
The apparent sizes and brightnesses of galaxies are correlated in a dipolar pattern around matter overdensities in redshift space, appearing larger on their near side and smaller on their far side. The opposite effect occurs for galaxies around an underdense region. These patterns of apparent magnification induce dipole and higher multipole terms in the cross-correlation of galaxy number density fluctuations with galaxy size/brightness (which is sensitive to the convergence field). This provides a means of directly measuring peculiar velocity statistics at low and intermediate redshift, with several advantages for performing cosmological tests of GR. In particular, it does not depend on empirically-calibrated scaling relations like the Tully-Fisher and Fundamental Plane methods. We show that the next generation of spectroscopic galaxy redshift surveys will be able to measure the Doppler magnification effect with sufficient signal-to-noise to test GR on large scales. We illustrate this with forecasts for the constraints that can be achieved on parametrised deviations from GR for forthcoming low-redshift galaxy surveys with DESI and SKA2. Although the cross-correlation statistic considered has a lower signal to noise than RSD, it will be a useful probe of GR since it is sensitive to different systematics.
We discuss the ability of the planned Euclid mission to detect deviations from General Relativity using its extensive redshift survey of more than 50 Million galaxies. Constraints on the gravity theory are placed measuring the growth rate of structure within 14 redshift bins between z=0.7 and z=2. The growth rate is measured from redshift-space distortions, i.e. the anisotropy of the clustering pattern induced by coherent peculiar motions. This is performed in the overall context of the Euclid spectroscopic survey, which will simultaneously measure the expansion history of the universe, using the power spectrum and its baryonic features as a standard ruler, accounting for the relative degeneracies of expansion and growth parameters. The resulting expected errors on the growth rate in the different redshift bins, expressed through the quantity fsigma_8, range between 1.3% and 4.4%. We discuss the optimisation of the survey configuration and investigate the important dependence on the growth parameterisation and the assumed cosmological model. We show how a specific parameterisation could actually drive the design towards artificially restricted regions of the parameter space. Finally, in the framework of the popular gamma -parameterisation, we show that the Euclid spectroscopic survey alone will already be able to provide substantial evidence (in Bayesian terms) if the growth index differs from the GR value gamma=0.55 by at least sim 0.13. This will combine with the comparable inference power provided by the Euclid weak lensing survey, resulting in Euclids unique ability to provide a decisive test of modified gravity.
111 - Heino Falcke 2010
In this paper we review and discuss some of the intriguing properties of the Galactic Center supermassive black hole candidate Sgr A*. Of all possible black hole sources, the event horizon of Sgr A*, subtends the largest angular scale on the sky. It is therefore a prime candidate to study and image plasma processes in strong gravity and it even allows imaging of the shadow cast by the event horizon. Recent mm-wave VLBI and radio timing observations as well as numerical GRMHD simulations now have provided several breakthroughs that put Sgr A* back into the focus. Firstly, VLBI observations have now measured the intrinsic size of Sgr A* at multiple frequencies, where the highest frequency measurements have approached the scale of the black hole shadow. Moreover, measurements of the radio variability show a clear time lag between 22 GHz and 43 GHz. The combination of size and timing measurements, allows one to actually measure the flow speed and direction of magnetized plasma at some tens of Schwarzschild radii. This data strongly support a moderately relativistic outflow, consistent with an accelerating jet model. This is compared to recent GRMHD simulation that show the presence of a moderately relativistic outflow coupled to an accretion flow Sgr A*. Further VLBI and timing observations coupled to simulations have the potential to map out the velocity profile from 5-40 Schwarzschild radii and to provide a first glimpse at the appearance of a jet-disk system near the event horizon. Future submm-VLBI experiments would even be able to directly image those processes in strong gravity and directly confirm the presence of an event horizon.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا