Do you want to publish a course? Click here

The Jet in the Galactic Center: An Ideal Laboratory for Magnetohydrodynamics and General Relativity

133   0   0.0 ( 0 )
 Added by Heino Falcke
 Publication date 2010
  fields Physics
and research's language is English
 Authors Heino Falcke




Ask ChatGPT about the research

In this paper we review and discuss some of the intriguing properties of the Galactic Center supermassive black hole candidate Sgr A*. Of all possible black hole sources, the event horizon of Sgr A*, subtends the largest angular scale on the sky. It is therefore a prime candidate to study and image plasma processes in strong gravity and it even allows imaging of the shadow cast by the event horizon. Recent mm-wave VLBI and radio timing observations as well as numerical GRMHD simulations now have provided several breakthroughs that put Sgr A* back into the focus. Firstly, VLBI observations have now measured the intrinsic size of Sgr A* at multiple frequencies, where the highest frequency measurements have approached the scale of the black hole shadow. Moreover, measurements of the radio variability show a clear time lag between 22 GHz and 43 GHz. The combination of size and timing measurements, allows one to actually measure the flow speed and direction of magnetized plasma at some tens of Schwarzschild radii. This data strongly support a moderately relativistic outflow, consistent with an accelerating jet model. This is compared to recent GRMHD simulation that show the presence of a moderately relativistic outflow coupled to an accretion flow Sgr A*. Further VLBI and timing observations coupled to simulations have the potential to map out the velocity profile from 5-40 Schwarzschild radii and to provide a first glimpse at the appearance of a jet-disk system near the event horizon. Future submm-VLBI experiments would even be able to directly image those processes in strong gravity and directly confirm the presence of an event horizon.



rate research

Read More

Stars within the innermost part of the Nuclear Star Cluster can reach orbital velocities up to a few percent of the light speed. As analyzed by Rafikov (2020), Doppler boosting of stellar light may be of relevance at the pericenter of stellar orbits, especially with the upcoming high-precision photometry in the near- and mid-infrared bands. Here we analyze the previously neglected effect of infrared spectral index of monitored objects on the Doppler-boosted continuum emission in a narrow band. In contrast to main-sequences stars, the detected compact infrared-excess dust-enshrouded objects have an enhanced Doppler-boosting effect by as much as an order of magnitude, with the variability amplitude of the order of ten percent for the most eccentric orbits. In a similar way, pulsars dominated by non-thermal synchrotron emission are also expected to exhibit a stronger Doppler-boosted signal by a factor of at least four in comparison with canonical S stars. In case the stellar orbit is robustly determined, the relative flux variation can thus provide hints about the nature of the objects. For extended dust-enshrouded objects, such as G1, that are variable due to tidal, ellipsoidal, bow-shock, and irradiation effects, the subtraction of the expected Doppler-boosting variations will help to better comprehend their internal physics. In addition, the relative flux variability due to higher-order relativistic effects is also modified for different negative spectral indices in a way that it can obtain both positive and negative values with the relative variability of the order of one percent.
154 - Yun Fang 2020
S-stars in the Galactic Center are excellent testbeds of various general relativistic effects. While previous works focus on modeling their orbital motion around Sgr A*--the supermassive black hole in the Galactic Center--here we explore the possibility of using the rotation of S-stars to test the de Sitter precession predicted by general relativity. We show that by reorienting the rotation axes of S-stars, de Sitter precession will change the apparent width of the absorption lines in the stellar spectra. Our numerical simulations suggest that the newly discovered S4714 and S62 are best suited for such a test because of their small pericenter distances relative to Sgr A*. Depending on the initial inclination of the star, the line width would vary by as much as $20-76,{rm km,s^{-1}}$ within a period of $20-40$ years. Such a variation is comparable to the current detection limit. Since the precession rate is sensitive to the orbital eccentricity and stellar quadrupole structure, monitoring the rotation of S-stars could also help us better constrain the orbital elements of the S-stars and their internal structures.
Observing gamma rays using ground-based atmospheric Cherenkov telescopes provides one of the only probes of heavy weakly interacting dark matter. A canonical target is the thermal wino, for which the strongest limits come from searches for photon lines from annihilations in the Galactic Center. Irreducible finite energy resolution effects motivate refining the prediction for a wino signal beyond the photon line approximation; recently, modern effective field theory techniques have been utilized to obtain a precise calculation of the full photon energy spectrum from wino annihilation. In this paper, we investigate the implications for a realistic mock H.E.S.S.-like line search. We emphasize the impact of including the non-trivial spectral shape, and we carefully treat the region of interest, presenting results for choices between $1^{circ}$ and $4^{circ}$ from the Galactic Center. Projected limits for wino masses from $1$-$70$ TeV are interpreted as a constraint on the wino annihilation rate, or alternatively as the minimum core size required such that the wino is not excluded. If there is a thermal wino, H.E.S.S. will be able to probe cores of several kpc, which would begin to cause tension between this dark matter candidate and astrophysical observations/simulations.
We perform magnetohydrodynamic simulations of accreting, equal-mass binary black holes in full general relativity focusing on the impact of black hole spin on the dynamical formation and evolution of minidisks. We find that during the late inspiral the sizes of minidisks are primarily determined by the interplay between the tidal field and the effective innermost stable orbit around each black hole. Our calculations support that a minidisk forms when the Hill sphere around each black hole is significantly larger than the black holes effective innermost stable orbit. As the binary inspirals, the radius of the Hill sphere decreases, and minidisk sconsequently shrink in size. As a result, electromagnetic signatures associated with minidisks may be expected to gradually disappear prior to merger when there are no more stable orbits within the Hill sphere. In particular, a gradual disappearance of a hard electromagnetic component in the spectrum of such systems could provide a characteristic signature of merging black hole binaries. For a binary of given total mass, the timescale to minidisk evaporation should therefore depend on the black hole spins and the mass ratio. We also demonstrate that accreting binary black holes with spin have a higher efficiency for converting accretion power to jet luminosity. These results could provide new ways to estimate black hole spins in the future.
81 - Qingjuan Yu 2020
This is an invited commentary on the Nobel Prize in Physics 2020 which was awarded to Roger Penrose for the discovery that black hole formation is a robust prediction of the general theory of relativity, and Reinhard Genzel and Andrea Ghez for the discovery of a supermassive compact object at the center of our galaxy.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا