Do you want to publish a course? Click here

Superconductivity at 7.3 K in the 133-type Cr-based RbCr3As3 single crystals

92   0   0.0 ( 0 )
 Added by ZhiAn Ren Dr.
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

Here we report the preparation and superconductivity of the 133-type Cr-based quasi-one-dimensional (Q1D) RbCr3As3 single crystals. The samples were prepared by the deintercalation of Rb+ ions from the 233-type Rb2Cr3As3 crystals which were grown from a high-temperature solution growth method. The RbCr3As3 compound crystallizes in a centrosymmetric structure with the space group of P63/m (No. 176) different with its non-centrosymmetric Rb2Cr3As3 superconducting precursor, and the refined lattice parameters are a = 9.373(3) {AA} and c = 4.203(7) {AA}. Electrical resistivity and magnetic susceptibility characterizations reveal the occurrence of superconductivity with an interestingly higher onset Tc of 7.3 K than other Cr-based superconductors, and a high upper critical field Hc2(0) near 70 T in this 133-type RbCr3As3 crystals.



rate research

Read More

Recently a new family of Cr-based A2Cr3As3 (A = K, Rb, Cs) superconductors were reported, which own a rare quasi-one-dimensional (Q1D) crystal structure with infinite (Cr3As3)2- chains and exhibit intriguing superconducting characteristics possibly derived from spin-triplet electron pairing. The crystal structure of A2Cr3As3 is actually a slight variation of the hexagonal TlFe3Te3 prototype although they have different lattice symmetry. Here we report superconductivity in a 133-type KCr3As3 compound that belongs to the latter structure. The single crystals of KCr3As3 were prepared by the deintercalation of K ions from K2Cr3As3 crystals which were grown from a high-temperature solution growth method, and it owns a centrosymmetric lattice in contrast to the non-centrosymmetric K2Cr3As3. After annealing at a moderate temperature, the KCr3As3 crystals show bulk superconductivity at 5 K revealed by electrical resistivity, magnetic susceptibility and heat capacity measurements. The discovery of this KCr3As3 superconductor provides a different structural instance to study the exotic superconductivity in these Q1D Cr-based superconductors.
We report superconductivity in as synthesized Nb2PdSe5, which is similar to recently discovered Nb2PdS5 compound having very high upper critical field, clearly above the Pauli paramagnetic limit [Sci. Rep. 3, 1446 (2013)]. A bulk polycrystalline Nb2PdSe5 sample is synthesized by solid state reaction route in phase pure structure. The structural characterization has been done by X ray diffraction, followed by Rietveld refinements, which revealed that Nb2PdSe5 sample is crystallized in monoclinic structure with in space group C2/m. Structural analysis revealed the formation of sharing of one dimensional PdSe2 chains. Electrical and magnetic measurements confirmed superconductivity in Nb2PdSe5 compound at 5.5K. Detailed magneto-resistance results, exhibited the value of upper critical field to be around 8.2Tesla. The estimated Hc2(0) is within Pauli Paramagnetic limit, which is unlike the Nb2PdS5.
Single-layer FeSe films grown on the SrTiO3 substrate (FeSe/STO) have attracted much attention because of their possible record-high superconducting critical temperature Tc and distinct electronic structures in iron-based superconductors. However, it has been under debate on how high its Tc can really reach due to the inconsistency of the results obtained from the transport, magnetic and spectroscopic measurements. Here we report spectroscopic evidence of superconductivity pairing at 83 K in single-layer FeSe/STO films. By preparing high-quality single-layer FeSe/STO films, we observe for the first time strong superconductivity-induced Bogoliubov back-bending bands that extend to rather high binding energy ~100 meV by high-resolution angle-resolved photoemission measurements. The Bogoliubov back-bending band provides a new definitive benchmark of superconductivity pairing that is directly observed up to 83 K in the single-layer FeSe/STO films. Moreover, we find that the superconductivity pairing state can be further divided into two temperature regions of 64-83 K and below 64 K. We propose the 64-83 K region may be attributed to superconductivity fluctuation while the region below 64 K corresponds to the realization of long-range superconducting phase coherence. These results indicate that either Tc as high as 83 K is achievable in iron-based superconductors, or there is a pseudogap formation from superconductivity fluctuation in single-layer FeSe/STO films.
We report the discovery of bulk superconductivity (SC) at 6.1 K in a quasi-one-dimensional (Q1D) chromium pnictide K$_2$Cr$_3$As$_3$ which contains [(Cr$_3$As$_3$)$^{2-}$]$_{infty}$ double-walled subnano-tubes with face-sharing Cr$_{6/2}$ (As$_{6/2}$) octahedron linear chains in the inner (outer) wall. The material has a large electronic specific-heat coefficient of 70$sim$75 mJ K$^{-2}$ mol$^{-1}$, indicating significantly strong electron correlations. Signature of non-Fermi liquid behavior is shown by the linear temperature dependence of resistivity in a broad temperature range from 7 to 300 K. Unconventional SC is preliminarily manifested by the estimated upper critical field exceeding the Pauli limit by a factor of three to four. The title compound represents a rare example that possibly unconventional SC emerges in a Q1D system with strong electron correlations.
Strain is a powerful experimental tool to explore new electronic states and understand unconventional superconductivity. Here, we investigate the effect of uniaxial strain on the nematic and superconducting phase of single crystal FeSe using magnetotransport measurements. We find that the resistivity response to the strain is strongly temperature dependent and it correlates with the sign change in the Hall coefficient being driven by scattering, coupling with the lattice and multiband phenomena. Band structure calculations suggest that under strain the electron pockets develop a large in-plane anisotropy as compared with the hole pocket. Magnetotransport studies at low temperatures indicate that the mobility of the dominant carriers increases with tensile strain. Close to the critical temperature, all resistivity curves at constant strain cross in a single point, indicating a universal critical exponent linked to a strain-induced phase transition. Our results indicate that the superconducting state is enhanced under compressive strain and suppressed under tensile strain, in agreement with the trends observed in FeSe thin films and overdoped pnictides, whereas the nematic phase seems to be affected in the opposite way by the uniaxial strain. By comparing the enhanced superconductivity under strain of different systems, our results suggest that strain on its own cannot account for the enhanced high $T_c$ superconductivity of FeSe systems.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا