Do you want to publish a course? Click here

The adaptive Monte Carlo toolbox for phase space integration and generation

66   0   0.0 ( 0 )
 Added by Rados{\\l}aw Kycia
 Publication date 2017
  fields
and research's language is English




Ask ChatGPT about the research

An implementation of the Monte Carlo (MC) phase space generators coupled with adaptive MC integration/simulation program FOAM is presented. The first program is a modification of the classic phase space generator GENBOD interfaced with the adaptive sampling integrator/generator FOAM. On top of this tool the algorithm suitable for generation of the phase space for an reaction with two leading particles is presented (double-peripheral process with central production of particles). At the same time it serves as an instructive example of construction of a self-adaptive phase space generator/integrator with a modular structure for specialized particle physics calculations.



rate research

Read More

Some of the most arduous and error-prone aspects of precision resummed calculations are related to the partonic hard process, having nothing to do with the resummation. In particular, interfacing to parton-distribution functions, combining various channels, and performing the phase space integration can be limiting factors in completing calculations. Conveniently, however, most of these tasks are already automated in many Monte Carlo programs, such as MadGraph, Alpgen or Sherpa. In this paper, we show how such programs can be used to produce distributions of partonic kinematics with associated color structures representing the hard factor in a resummed distribution. These distributions can then be used to weight convolutions of jet, soft and beam functions producing a complete resummed calculation. In fact, only around 1000 unweighted events are necessary to produce precise distributions. A number of examples and checks are provided, including $e^+e^-$ two- and four-jet event shapes, $n$-jettiness and jet-mass related observables at hadron colliders. Attached code can be used to modify MadGraph to export the relevant leading-order hard functions and color structures for arbitrary processes.
MCBooster is a header-only, C++11-compliant library that provides routines to generate and perform calculations on large samples of phase space Monte Carlo events. To achieve superior performance, MCBooster is capable to perform most of its calculations in parallel using CUDA- and OpenMP-enabled devices. MCBooster is built on top of the Thrust library and runs on Linux systems. This contribution summarizes the main features of MCBooster. A basic description of the user interface and some examples of applications are provided, along with measurements of performance in a variety of environments
We present a method of solution of the Bartels-Kwiecinski-Praszalowicz (BKP) equation based on the numerical integration of iterated integrals in transverse momentum and rapidity space. As an application, our procedure, which makes use of Monte Carlo integration techniques, is applied to obtain the gluon Green function in the odderon case at leading order. The same approach can be used for more complicated scenarios.
The principles behind the computation of protein-ligand binding free energies by Monte Carlo integration are described in detail. The simulation provides gas-phase binding free energies that can be converted to aqueous energies by solvation corrections. The direct integration simulation has several characteristics beneficial to free-energy calculations. One is that the number of parameters that must be set for the simulation is small and can be determined objectively, making the outcome more deterministic, with respect to choice of input conditions, as compared to perturbation methods. Second, the simulation is free from assumptions about the starting pose or nature of the binding site. A final benefit is that binding free energies are a direct outcome of the simulation, and little processing is required to determine them. The well-studied T4 lysozyme experimental free energy data and crystal structures were used to evaluate the method.
144 - Philip Ilten 2019
Monte Carlo generation of high energy particle collisions is a critical tool for both theoretical and experimental particle physics, connecting perturbative calculations to phenomenological models, and theory predictions to full detector simulation. The generation of minimum bias events can be particularly computationally expensive, where non-perturbative effects play an important role and specific processes and fiducial regions can no longer be well defined. In particular scenarios, particle guns can be used to quickly sample kinematics for single particles produced in minimum bias events. CIMBA (Cubic Interpolation for Minimum Bias Approximation) provides a comprehensive package to smoothly sample predefined kinematic grids, from any general purpose Monte Carlo generator, for all particles produced in minimum bias events. These grids are provided for a number of beam configurations including those of the Large Hadron Collider.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا