No Arabic abstract
Monte Carlo generation of high energy particle collisions is a critical tool for both theoretical and experimental particle physics, connecting perturbative calculations to phenomenological models, and theory predictions to full detector simulation. The generation of minimum bias events can be particularly computationally expensive, where non-perturbative effects play an important role and specific processes and fiducial regions can no longer be well defined. In particular scenarios, particle guns can be used to quickly sample kinematics for single particles produced in minimum bias events. CIMBA (Cubic Interpolation for Minimum Bias Approximation) provides a comprehensive package to smoothly sample predefined kinematic grids, from any general purpose Monte Carlo generator, for all particles produced in minimum bias events. These grids are provided for a number of beam configurations including those of the Large Hadron Collider.
A fast leading-order Monte Carlo generator for the process $e^+e^-tomu^+mu^-gamma$ is described. In fact, using the $e^+e^-tomu^+mu^-gamma $ process as an example, we provide a pedagogical demonstration of how a Monte Carlo generator can be created from scratch. The $e^+ e^- to mu^+ mu^- gamma$ process was chosen, since in this case we are not faced with either too trivial or too difficult a task. Matrix elements are calculated using the helicity amplitude method. Monte Carlo algorithm uses the acceptance-rejection method with an appropriately chosen simplified distribution that can be generated using an efficient algorithm. We provide a detailed pedagogical exposition of both the helicity amplitude method and the Monte Carlo technique, which we hope will be useful for high energy physics students.
We present an investigation of the dependence of searches for boosted Higgs bosons using jet substructure on the perturbative and non-perturbative parameters of the Herwig++ Monte Carlo event generator. Values are presented for a new tune of the parameters of the event generator, together with the an estimate of the uncertainties based on varying the parameters around the best-fit values.
The algorithm for Monte Carlo simulation of parton-level events based on an Artificial Neural Network (ANN) proposed in arXiv:1810.11509 is used to perform a simulation of $Hto 4ell$ decay. Improvements in the training algorithm have been implemented to avoid numerical instabilities. The integrated decay width evaluated by the ANN is within 0.7% of the true value and unweighting efficiency of 26% is reached. While the ANN is not automatically bijective between input and output spaces, which can lead to issues with simulation quality, we argue that the training procedure naturally prefers bijective maps, and demonstrate that the trained ANN is bijective to a very good approximation.
CASCADE is a full hadron level Monte Carlo event generator for ep, gamma p and pbar{p} and pp processes, which uses the CCFM evolution equation for the initial state cascade in a backward evolution approach supplemented with off - shell matrix elements for the hard scattering. A detailed program description is given, with emphasis on parameters the user wants to change and variables which completely specify the generated events.
MCBooster is a header-only, C++11-compliant library that provides routines to generate and perform calculations on large samples of phase space Monte Carlo events. To achieve superior performance, MCBooster is capable to perform most of its calculations in parallel using CUDA- and OpenMP-enabled devices. MCBooster is built on top of the Thrust library and runs on Linux systems. This contribution summarizes the main features of MCBooster. A basic description of the user interface and some examples of applications are provided, along with measurements of performance in a variety of environments