Do you want to publish a course? Click here

Using Noisy Extractions to Discover Causal Knowledge

109   0   0.0 ( 0 )
 Added by Dhanya Sridhar
 Publication date 2017
and research's language is English




Ask ChatGPT about the research

Knowledge bases (KB) constructed through information extraction from text play an important role in query answering and reasoning. In this work, we study a particular reasoning task, the problem of discovering causal relationships between entities, known as causal discovery. There are two contrasting types of approaches to discovering causal knowledge. One approach attempts to identify causal relationships from text using automatic extraction techniques, while the other approach infers causation from observational data. However, extractions alone are often insufficient to capture complex patterns and full observational data is expensive to obtain. We introduce a probabilistic method for fusing noisy extractions with observational data to discover causal knowledge. We propose a principled approach that uses the probabilistic soft logic (PSL) framework to encode well-studied constraints to recover long-range patterns and consistent predictions, while cheaply acquired extractions provide a proxy for unseen observations. We apply our method gene regulatory networks and show the promise of exploiting KB signals in causal discovery, suggesting a critical, new area of research.

rate research

Read More

The graph of a Bayesian Network (BN) can be machine learned, determined by causal knowledge, or a combination of both. In disciplines like bioinformatics, applying BN structure learning algorithms can reveal new insights that would otherwise remain unknown. However, these algorithms are less effective when the input data are limited in terms of sample size, which is often the case when working with real data. This paper focuses on purely machine learned and purely knowledge-based BNs and investigates their differences in terms of graphical structure and how well the implied statistical models explain the data. The tests are based on four previous case studies whose BN structure was determined by domain knowledge. Using various metrics, we compare the knowledge-based graphs to the machine learned graphs generated from various algorithms implemented in TETRAD spanning all three classes of learning. The results show that, while the algorithms produce graphs with much higher model selection score, the knowledge-based graphs are more accurate predictors of variables of interest. Maximising score fitting is ineffective in the presence of limited sample size because the fitting becomes increasingly distorted with limited data, guiding algorithms towards graphical patterns that share higher fitting scores and yet deviate considerably from the true graph. This highlights the value of causal knowledge in these cases, as well as the need for more appropriate fitting scores suitable for limited data. Lastly, the experiments also provide new evidence that support the notion that results from simulated data tell us little about actual real-world performance.
For decades, researchers in fields, such as the natural and social sciences, have been verifying causal relationships and investigating hypotheses that are now well-established or understood as truth. These causal mechanisms are properties of the natural world, and thus are invariant conditions regardless of the collection domain or environment. We show in this paper how prior knowledge in the form of a causal graph can be utilized to guide model selection, i.e., to identify from a set of trained networks the models that are the most robust and invariant to unseen domains. Our method incorporates prior knowledge (which can be incomplete) as a Structural Causal Model (SCM) and calculates a score based on the likelihood of the SCM given the target predictions of a candidate model and the provided input variables. We show on both publicly available and synthetic datasets that our method is able to identify more robust models in terms of generalizability to unseen out-of-distribution test examples and domains where covariates have shifted.
Observations by HAWC and Milagro have detected bright and spatially extended TeV gamma-ray sources surrounding the Geminga and Monogem pulsars. We argue that these observations, along with a substantial population of other extended TeV sources coincident with pulsar wind nebulae, constitute a new morphological class of spatially extended TeV halos. We show that HAWCs wide field-of-view unlocks an expansive parameter space of TeV halos not observable by atmospheric Cherenkov telescopes. Under the assumption that Geminga and Monogem are typical middle-aged pulsars, we show that ten-year HAWC observations should eventually observe 37$^{+17}_{-13}$ middle-aged TeV halos that correspond to pulsars whose radio emission is not beamed towards Earth. Depending on the extrapolation of the TeV halo efficiency to young pulsars, HAWC could detect more than 100 TeV halos from mis-aligned pulsars. These pulsars have historically been difficult to detect with existing multiwavelength observations. TeV halos will constitute a significant fraction of all HAWC sources, allowing follow-up observations to efficiently find pulsar wind nebulae and thermal pulsar emission. The observation and subsequent multi-wavelength follow-up of TeV halos will have significant implications for our understanding of pulsar beam geometries, the evolution of PWN, the diffusion of cosmic-rays near energetic pulsars, and the contribution of pulsars to the cosmic-ray positron excess.
77 - Can Cui , Wei Wang , Meihui Zhang 2021
Alphas are stock prediction models capturing trading signals in a stock market. A set of effective alphas can generate weakly correlated high returns to diversify the risk. Existing alphas can be categorized into two classes: Formulaic alphas are simple algebraic expressions of scalar features, and thus can generalize well and be mined into a weakly correlated set. Machine learning alphas are data-driven models over vector and matrix features. They are more predictive than formulaic alphas, but are too complex to mine into a weakly correlated set. In this paper, we introduce a new class of alphas to model scalar, vector, and matrix features which possess the strengths of these two existing classes. The new alphas predict returns with high accuracy and can be mined into a weakly correlated set. In addition, we propose a novel alpha mining framework based on AutoML, called AlphaEvolve, to generate the new alphas. To this end, we first propose operators for generating the new alphas and selectively injecting relational domain knowledge to model the relations between stocks. We then accelerate the alpha mining by proposing a pruning technique for redundant alphas. Experiments show that AlphaEvolve can evolve initial alphas into the new alphas with high returns and weak correlations.
With the rapid growth of knowledge, it shows a steady trend of knowledge fragmentization. Knowledge fragmentization manifests as that the knowledge related to a specific topic in a course is scattered in isolated and autonomous knowledge sources. We term the knowledge of a facet in a specific topic as a knowledge fragment. The problem of knowledge fragmentization brings two challenges: First, knowledge is scattered in various knowledge sources, which exerts users considerable efforts to search for the knowledge of their interested topics, thereby leading to information overload. Second, learning dependencies which refer to the precedence relationships between topics in the learning process are concealed by the isolation and autonomy of knowledge sources, thus causing learning disorientation. To solve the knowledge fragmentization problem, we propose a novel knowledge organization model, knowledge forest, which consists of facet trees and learning dependencies. Facet trees can organize knowledge fragments with facet hyponymy to alleviate information overload. Learning dependencies can organize disordered topics to cope with learning disorientation. We conduct extensive experiments on three manually constructed datasets from the Data Structure, Data Mining, and Computer Network courses, and the experimental results show that knowledge forest can effectively organize knowledge fragments, and alleviate information overload and learning disorientation.

suggested questions

comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا