No Arabic abstract
We present analysis of the first Chandra observation of PSO J334.2028+01.4075 (PSO J334), targeted as a binary-AGN candidate based on periodic variations of the optical flux. With no prior targeted X-ray coverage for PSO J334, our new 40 ksec Chandra observation allows for the opportunity to differentiate between a single or binary-AGN system, and if a binary, can characterize the mode of accretion. Simulations show that the two expected accretion disk morphologies for binary-AGN systems are (i) a cavity, where the inner region of the accretion disk is mostly empty and emission is truncated blueward of the wavelength associated with the temperature of the innermost ring, or (ii) minidisks, where there is substantial accretion from the cirumbinary disk onto one or both of the members of the binary, each with their own shock-heated thin-disk accretion system. We find the X-ray emission to be well-fit with an absorbed power-law, incompatible with the simple cavity scenario. Further, we construct an SED of PSO J334 by combining radio through X-ray observations and find that the SED agrees well with that of a normal AGN, most likely incompatible with the minidisk scenario. Other analyses, such as locating the quasar on IR color-color diagrams and analyzing the quasar mass predicted by the fundamental plane of black hole activity, further highlight the similarity of PSO J334 with respect to normal AGN. On the multi-wavelength fronts we investigated, we find no evidence supporting PSO J334 as a binary-AGN system, though our analysis remains insensitive to some binary configurations.
We investigate the nature of the unidentified very-high-energy (VHE) gamma-ray object, HESS J1832-093, in a multi-wavelength context. Based on X-ray variability and spectral index ($Gamma_Xsim,1.5$), and its broad-band spectrum (which was remarkably similar to HESS J0632+057, a confirmed gamma-ray binary), HESS J1832-093 has been considered to be a strong gamma-ray binary candidate in previous works. In this work, we provide further evidence for this scenario. We obtained a spectrum of its IR counterpart using Gemini/Flamingo, finding absorption lines that are usually seen in massive stars, in particular O stars. We also obtained a rather steep ATCA spectrum ($alpha=-1.18^{+1.04}_{-0.88}$) which prefers a gamma-ray binary over an AGN scenario. Based on spatial-spectral analysis and variability search, we found that 4FGL J1832.9-0913 is possible to be associated with SNR G22.7-0.2 rather than with HESS J1832-093 only.
AT2019wey (SRGA J043520.9+552226, SRGE J043523.3+552234) is a transient first reported by the ATLAS optical survey in 2019 December. It rose to prominence upon detection, three months later, by the Spektrum-Roentgen-Gamma (SRG) mission in its first all-sky survey. X-ray observations reported in Yao et al. suggest that AT2019wey is a Galactic low-mass X-ray binary (LMXB) with a black hole (BH) or neutron star (NS) accretor. Here we present ultraviolet, optical, near-infrared, and radio observations of this object. We show that the companion is a short-period (P < 16 hr) low-mass (< 1 Msun) star. We consider AT2019wey to be a candidate BH system since its locations on the L_radio--L_X and L_opt--L_X diagrams are closer to BH binaries than NS binaries. We demonstrate that from 2020 June to August, despite the more than 10 times brightening at radio and X-ray wavelengths, the optical luminosity of AT2019wey only increased by 1.3--1.4 times. We interpret the UV/optical emission before the brightening as thermal emission from a truncated disk in a hot accretion flow and the UV/optical emission after the brightening as reprocessing of the X-ray emission in the outer accretion disk. AT2019wey demonstrates that combining current wide-field optical surveys and SRG provides a way to discover the emerging population of short-period BH LMXB systems with faint X-ray outbursts.
We present results from a multi-wavelength analysis searching for multiple AGN systems in nearby (z<0.077) triple galaxy mergers. Combining archival Chandra, SDSS, WISE, and VLA observations, we quantify the rate of nearby triple AGN, as well as investigate possible connections between SMBH accretion and merger environments. Analyzing the multi-wavelength observations of 7 triple galaxy mergers, we find that 1 triple merger has a single AGN (NGC 3341); we discover, for the first time, 4 likely dual AGN (SDSS J1027+1749, SDSS J1631+2352, SDSS J1708+2153, and SDSS J2356-1016); we confirm one triple AGN system, SDSS J0849+1114; and 1 triple merger in our sample remains ambiguous (SDSS J0858+1822). Analyzing the WISE data, we find a trend of increasing N_H (associated with the primary AGN) as a function of increasing W1-W2 color, reflecting that the motions of gas and dust are coupled in merging environments, where large amount of both can be funneled into the active central region during mergers. Additionally, we find that the one triple AGN system in our sample has the highest levels of N_H and W1-W2 color, while the dual AGN candidates all have lower levels; these results are consistent with theoretical merger simulations that suggest higher levels of nuclear gas are more likely to activate AGN in mergers.
We present multi-wavelength observations of the unassociated gamma-ray source 3FGL J2039.6-5618 detected by the Fermi Large Area Telescope. The source gamma-ray properties suggest that it is a pulsar, most likely a millisecond pulsar, for which neither radio nor $gamma$-ray pulsations have been detected yet. We observed 3FGL J2039.6-5618 with XMM-Newton and discovered several candidate X-ray counterparts within/close to the gamma-ray error box. The brightest of these X-ray sources is variable with a period of 0.2245$pm$0.0081 d. Its X-ray spectrum can be described by a power law with photon index $Gamma_X =1.36pm0.09$, and hydrogen column density $N_{rm H} < 4 times 10^{20}$ cm$^{-2}$, which gives an unabsorbed 0.3--10 keV X-ray flux of $1.02 times 10^{-13}$ erg cm$^{-2}$ s$^{-1}$. Observations with the Gamma-Ray Burst Optical/Near-Infrared Detector (GROND) discovered an optical counterpart to this X-ray source, with a time-average magnitude $gsim 19.5$. The counterpart features a flux modulation with a period of 0.22748$pm$0.00043 d that coincides, within the errors, with that of the X-ray source, confirming the association based on the positional coincidence. We interpret the observed X-ray/optical periodicity as the orbital period of a close binary system where one of the two members is a neutron star. The light curve profile of the companion star, with two asymmetric peaks, suggests that the optical emission comes from two regions at different temperatures on its tidally-distorted surface. Based upon its X-ray and optical properties, we consider this source as the most likely X-ray counterpart to 3FGL J2039.6-5618, which we propose to be a new redback system.
Motivated by the identification of the blazar TXS 0506+056 as the first promising high-energy neutrino counterpart candidate, we search for additional neutrino blazars candidates among the Fermi-LAT detected blazars. We investigate the multi-wavelength behavior from radio to GeV gamma rays of blazars found to be in spatial coincidence with single high-energy neutrinos and lower-energy neutrino flare candidates. In addition, we compare the average gamma-ray emission of the potential neutrino-emitting sources to the entire sample of gamma-ray blazars. We find that neutrino-emitting blazar candidates are statistically compatible with both hypothesis of a linear correlation and of no correlation between neutrino and gamma-ray energy flux.