No Arabic abstract
AT2019wey (SRGA J043520.9+552226, SRGE J043523.3+552234) is a transient first reported by the ATLAS optical survey in 2019 December. It rose to prominence upon detection, three months later, by the Spektrum-Roentgen-Gamma (SRG) mission in its first all-sky survey. X-ray observations reported in Yao et al. suggest that AT2019wey is a Galactic low-mass X-ray binary (LMXB) with a black hole (BH) or neutron star (NS) accretor. Here we present ultraviolet, optical, near-infrared, and radio observations of this object. We show that the companion is a short-period (P < 16 hr) low-mass (< 1 Msun) star. We consider AT2019wey to be a candidate BH system since its locations on the L_radio--L_X and L_opt--L_X diagrams are closer to BH binaries than NS binaries. We demonstrate that from 2020 June to August, despite the more than 10 times brightening at radio and X-ray wavelengths, the optical luminosity of AT2019wey only increased by 1.3--1.4 times. We interpret the UV/optical emission before the brightening as thermal emission from a truncated disk in a hot accretion flow and the UV/optical emission after the brightening as reprocessing of the X-ray emission in the outer accretion disk. AT2019wey demonstrates that combining current wide-field optical surveys and SRG provides a way to discover the emerging population of short-period BH LMXB systems with faint X-ray outbursts.
AT2019wey is a Galactic low mass X-ray binary with a candidate black hole accretor first discovered as an optical transient by ATLAS in December 2019. It was then associated with an X-ray source discovered by SRG in March 2020. After observing a brightening in X-rays in August 2020, VLA observations of the source revealed an optically thin spectrum that subsequently shifted to optically thick, as the source continued to brighten in radio. This motivated observations of the source with the VLBA. We found a resolved source that we interpret to be a steady compact jet, a feature associated with black hole X-ray binary systems in the hard X-ray spectral state. The jet power is comparable to the accretion-disk X-ray luminosity. Here, we summarize the results from these observations.
AT2019wey is a new galactic X-ray binary that was first discovered as an optical transient by the Australia Telescope Large Area Survey (ATLAS) on December 7, 2019. AT2019wey consists of a black hole candidate as well as a low-mass companion star ($M_{text {star }} lesssim 0.8 M_{odot}$) and is likely to have a short orbital period ($P_{text {orb }} lesssim 8$ h). Although AT2019wey began activation in the X-ray band during almost the entire outburst on March 8, 2020, it did not enter the soft state during the entire outburst. In this study, we present a detailed spectral analysis of AT2019wey in the low/hard state during its X-ray outburst on the basis of Nuclear Spectroscopic Telescope Array emph observations. We obtain tight constraints on several of its important physical parameters by applying the State-of-art texttt{relxill} relativistic reflection model family. In particular, we determine that the measured inner radius of the accretion disk is most likely to have extended to the innermost stable circular orbit (ISCO) radius, i.e., $R_{text{in}}=1.38^{+0.23}_{-0.16}~R_{text{ISCO}}$. Hence, assuming $R_{text{in}}$=$R_{text{ISCO}}$, we find the spin of AT2019wey to be $a_{*}sim$ $0.97$, which is close to the extreme and an inner disk inclination angle of ~$isim$ $22 ^{circ}$. Additionally, according to our adopted models, AT2019wey tends to have a relatively high iron abundance of $A_{mathrm{Fe}}sim$ 5 $A_{mathrm{Fe}, odot}$ and a high disk ionization state of $log xisim$ 3.4.
We report the discovery of a bright transient X-ray source, CXOU J132518.2-430304, towards Centaurus A (Cen A) using six new Chandra X-Ray Observatory observations in 2007 March--May. Between 2003 and 2007, its flux has increased by a factor of >770. The source is likely a low-mass X-ray binary in Cen A with unabsorbed 0.3-10 keV band luminosities of (2-3) x 10^{39} erg s^-1 and a transition from the steep-power law state to the thermal state during our observations. CXOU J132518.2-430304 is the most luminous X-ray source in an early-type galaxy with extensive timing information that reveals transience and a spectral state transition. Combined with its luminosity, these properties make this source one of the strongest candidates to date for containing a stellar-mass black hole in an early-type galaxy. Unless this outburst lasts many years, the rate of luminous transients in Cen A is anomalously high compared to other early-type galaxies.
Energy released when the core of a high-mass star collapses into a black hole often powers an explosion that creates a supernova remnant. Black holes have limited windows of observability, and consequently are rarely identified in association with supernova remnants. Analysing multi-messenger data, we show that MAXI J1535-571 is the black hole produced in the stellar explosion that gave rise to the supernova remnant G323.7-1.0, making it the first case of an association between a black hole low-mass X-ray binary and a supernova remnant. Given this connection, we can infer from our modelling that the progenitor system was a close binary whose primary star had an initial mass of approx. 23-35 solar masses with a companion star about 10 times less massive.
We report on multi-band observations of the transient source Swift J0840.7-3516, which was detected in outburst in 2020 February by the Neil Gehrels Swift Observatory. The outburst episode lasted just ~5 days, during which the X-ray luminosity quickly decreased from ~3E37 erg/s at peak down to ~5E33 erg/s in quiescence (0.3-10 keV; at 10 kpc). Such a marked and rapid decrease in the flux was also registered at UV and optical wavelengths. In outburst, the source showed considerable aperiodic variability in the X-rays on timescales as short as a few seconds. The spectrum of the source in the energy range 0.3-20 keV was well described by a thermal, blackbody-like, component plus a non-thermal, power law-like, component and it softened considerably as the source returned to quiescence. The spectrum of the optical counterpart in quiescence showed broad emission features associated mainly with ionised carbon and oxygen, superposed on a blue continuum. No evidence for bright continuum radio emission was found in quiescence. We discuss possible scenarios for the nature of this source, and show that the observed phenomenology points to a transient ultra-compact X-ray binary system.