Do you want to publish a course? Click here

Modeling Semantic Relatedness using Global Relation Vectors

140   0   0.0 ( 0 )
 Added by Shoaib Jameel
 Publication date 2017
and research's language is English




Ask ChatGPT about the research

Word embedding models such as GloVe rely on co-occurrence statistics from a large corpus to learn vector representations of word meaning. These vectors have proven to capture surprisingly fine-grained semantic and syntactic information. While we may similarly expect that co-occurrence statistics can be used to capture rich information about the relationships between different words, existing approaches for modeling such relationships have mostly relied on manipulating pre-trained word vectors. In this paper, we introduce a novel method which directly learns relation vectors from co-occurrence statistics. To this end, we first introduce a variant of GloVe, in which there is an explicit connection between word vectors and PMI weighted co-occurrence vectors. We then show how relation vectors can be naturally embedded into the resulting vector space.



rate research

Read More

Semantic relatedness of terms represents similarity of meaning by a numerical score. On the one hand, humans easily make judgments about semantic relatedness. On the other hand, this kind of information is useful in language processing systems. While semantic relatedness has been extensively studied for English using numerous language resources, such as associative norms, human judgments, and datasets generated from lexical databases, no evaluation resources of this kind have been available for Russian to date. Our contribution addresses this problem. We present five language resources of different scale and purpose for Russian semantic relatedness, each being a list of triples (word_i, word_j, relatedness_ij). Four of them are designed for evaluation of systems for computing semantic relatedness, complementing each other in terms of the semantic relation type they represent. These benchmarks were used to organize a shared task on Russian semantic relatedness, which attracted 19 teams. We use one of the best approaches identified in this competition to generate the fifth high-coverage resource, the first open distributional thesaurus of Russian. Multiple evaluations of this thesaurus, including a large-scale crowdsourcing study involving native speakers, indicate its high accuracy.
Semantic graphs, such as WordNet, are resources which curate natural language on two distinguishable layers. On the local level, individual relations between synsets (semantic building blocks) such as hypernymy and meronymy enhance our understanding of the words used to express their meanings. Globally, analysis of graph-theoretic properties of the entire net sheds light on the structure of human language as a whole. In this paper, we combine global and local properties of semantic graphs through the framework of Max-Margin Markov Graph Models (M3GM), a novel extension of Exponential Random Graph Model (ERGM) that scales to large multi-relational graphs. We demonstrate how such global modeling improves performance on the local task of predicting semantic relations between synsets, yielding new state-of-the-art results on the WN18RR dataset, a challenging version of WordNet link prediction in which easy reciprocal cases are removed. In addition, the M3GM model identifies multirelational motifs that are characteristic of well-formed lexical semantic ontologies.
182 - Yu Su , Honglei Liu , Semih Yavuz 2017
We study the problem of textual relation embedding with distant supervision. To combat the wrong labeling problem of distant supervision, we propose to embed textual relations with global statistics of relations, i.e., the co-occurrence statistics of textual and knowledge base relations collected from the entire corpus. This approach turns out to be more robust to the training noise introduced by distant supervision. On a popular relation extraction dataset, we show that the learned textual relation embedding can be used to augment existing relation extraction models and significantly improve their performance. Most remarkably, for the top 1,000 relational facts discovered by the best existing model, the precision can be improved from 83.9% to 89.3%.
Distance based knowledge graph embedding methods show promising results on link prediction task, on which two topics have been widely studied: one is the ability to handle complex relations, such as N-to-1, 1-to-N and N-to-N, the other is to encode various relation patterns, such as symmetry/antisymmetry. However, the existing methods fail to solve these two problems at the same time, which leads to unsatisfactory results. To mitigate this problem, we propose PairRE, a model with paired vectors for each relation representation. The paired vectors enable an adaptive adjustment of the margin in loss function to fit for complex relations. Besides, PairRE is capable of encoding three important relation patterns, symmetry/antisymmetry, inverse and composition. Given simple constraints on relation representations, PairRE can encode subrelation further. Experiments on link prediction benchmarks demonstrate the proposed key capabilities of PairRE. Moreover, We set a new state-of-the-art on two knowledge graph datasets of the challenging Open Graph Benchmark.
Tree-based Long short term memory (LSTM) network has become state-of-the-art for modeling the meaning of language texts as they can effectively exploit the grammatical syntax and thereby non-linear dependencies among words of the sentence. However, most of these models cannot recognize the difference in meaning caused by a change in semantic roles of words or phrases because they do not acknowledge the type of grammatical relations, also known as typed dependencies, in sentence structure. This paper proposes an enhanced LSTM architecture, called relation gated LSTM, which can model the relationship between two inputs of a sequence using a control input. We also introduce a Tree-LSTM model called Typed Dependency Tree-LSTM that uses the sentence dependency parse structure as well as the dependency type to embed sentence meaning into a dense vector. The proposed model outperformed its type-unaware counterpart in two typical NLP tasks - Semantic Relatedness Scoring and Sentiment Analysis, in a lesser number of training epochs. The results were comparable or competitive with other state-of-the-art models. Qualitative analysis showed that changes in the voice of sentences had little effect on the models predicted scores, while changes in nominal (noun) words had a more significant impact. The model recognized subtle semantic relationships in sentence pairs. The magnitudes of learned typed dependencies embeddings were also in agreement with human intuitions. The research findings imply the significance of grammatical relations in sentence modeling. The proposed models would serve as a base for future researches in this direction.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا