Do you want to publish a course? Click here

Feasibility of near-unstable cavities for future gravitational wave detectors

141   0   0.0 ( 0 )
 Added by Haoyu Wang
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

Near-unstable cavities have been proposed as an enabling technology for future gravitational wave detectors, as their compact structure and large beam spots can reduce the coating thermal noise of the interferometer. We present a tabletop experiment investigating the behaviour of an optical cavity as it is parametrically pushed to geometrical instability. We report on the observed degeneracies of the cavitys eigenmodes as the cavity becomes unstable and the resonance conditions become hyper-sensitive to mirror surface imperfections. A simple model of the cavity and precise measurements of the resonant frequencies allow us to characterize the stability of the cavity and give an estimate of the mirror astigmatism. The significance of these results for gravitational wave detectors is discussed, and avenues for further research are suggested.



rate research

Read More

The polarisation Sagnac speedmeter interferometer has the potential to replace the Michelson interferometer as the instrumental basis for future generations of ground-based gravitational wave detectors. The quantum noise benefit of this speedmeter is dependent on high-quality polarisation optics, the polarisation beam-splitter (PBS) and quarter-waveplate (QWP) optics that are key to this detector configuration and careful consideration of the effect of birefringence in the arm cavities of the interferometer. A PBS with an extinction ratio of better than 4000 in transmission and 700 in reflection for a $41^{circ}$ angle of incidence was characterised along with a QWP of birefringence of $frac{lambda}{4} + frac{lambda}{324}$. The cavity mirror optics of a 10m prototype polarisation Sagnac speedmeter were measured to have birefringence in the range $1times10^{-3}$ to $2times10^{-5}$ radians. This level of birefringence, along with the QWP imperfections, can be canceled out by careful adjustment of the QWP angle, to the extent that the extinction ratio of the PBS is the leading limitation for the polarisation Sagnac speedmeter in terms of polarisation effects.
Current and future interferometeric gravitational-wave detectors are limited predominantly by shot noise at high frequencies. Shot noise is reduced by introducing arm cavities and signal recycling, however, there exists a tradeoff between the peak sensitivity and bandwidth. This comes from the accumulated phase of signal sidebands when propagating inside the arm cavities. One idea is to cancel such a phase by introducing an unstable optomechanical filter. The original design proposed in [Phys.~Rev.~Lett.~{bf 115},~211104 (2015)] requires an additional optomechanical filter coupled externally to the main interferometer. Here we consider a simplified design that converts the signal-recycling cavity itself into the unstable filter by using one mirror as a high-frequency mechanical oscillator and introducing an additional pump laser. However, the enhancement in bandwidth of this new design is less than the original design given the same set of optical parameters. The peak sensitivity improvement factor depends on the arm length, the signal-recycling cavity length, and the final detector bandwidth. For a 4~km interferometer, if the final detector bandwidth is around 2~kHz, with a 20~m signal-recycling cavity, the shot noise can be reduced by 10 decibels, in addition to the improvement introduced by squeezed light injection. We also find that the thermal noise of the mechanical oscillator is enhanced at low frequencies relative to the vacuum noise, while having a flat spectrum at high frequencies.
We consider enhancing the sensitivity of future gravitational-wave detectors by using double optical spring. When the power, detuning and bandwidth of the two carriers are chosen appropriately, the effect of the double optical spring can be described as a negative inertia, which cancels the positive inertia of the test masses and thus increases their response to gravitational waves. This allows us to surpass the free-mass Standard Quantum Limit (SQL) over a broad frequency band, through signal amplification, rather than noise cancelation, which has been the case for all broadband SQL-beating schemes so far considered for gravitational-wave detectors. The merit of such signal amplification schemes lies in the fact that they are less susceptible to optical losses than noise cancelation schemes. We show that it is feasible to demonstrate such an effect with the {it Gingin High Optical Power Test Facility}, and it can eventually be implemented in future advanced GW detectors.
Second-generation interferometric gravitational-wave detectors will be operating at the Standard Quantum Limit, a sensitivity limitation set by the trade off between measurement accuracy and quantum back action, which is governed by the Heisenberg Uncertainty Principle. We review several schemes that allows the quantum noise of interferometers to surpass the Standard Quantum Limit significantly over a broad frequency band. Such schemes may be an important component of the design of third-generation detectors.
Detuning the signal-recycling cavity length from a cavity resonance significantly improves the quantum noise beyond the standard quantum limit, while there is no km-scale gravitational-wave detector successfully implemented the technique. The detuning technique is known to introduce great excess noise, and such noise can be reduced by a laser modulation system with two Mach-Zehnder interferometers in series. This modulation system, termed Mach-Zehnder Modulator (MZM), also makes the control of the gravitational-wave detector more robust by introducing the third modulation field which is non-resonant in any part of the main interferometer. On the other hand, mirror displacements of the Mach-Zehnder interferometers arise a new kind of noise source coupled to the gravitational-wave signal port. In this paper, the displacement noise requirement of the MZM is derived, and also results of our proof-of-principle experiment is reported.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا