No Arabic abstract
Ultra-faint galaxies are hosted by small dark matter halos with shallow gravitational potential wells, hence their star formation activity is more sensitive to feedback effects. The shape of the faint-end of the high-$z$ galaxy luminosity function (LF) contains important information on star formation and its interaction with the reionization process during the Epoch of Reionization (EoR). High-$z$ galaxies with $M_{rm UV}gtrsim-17$ have only recently become accessible thanks to the Frontier Fields (FFs) survey combining deep {it HST} imaging and the gravitational lensing effect. In this paper we investigate the faint-end of the LF at redshift $>$5 using the data of FFs clusters Abell 2744 (A2744), MACSJ0416.1-2403 (M0416), MACSJ0717.5+3745 (M0717) and MACSJ1149.5+2223 (M1149). We analyze both an empirical and a physically-motivated LF model to obtain constraints on a possible turn-over of LF at faint magnitudes. In the empirical model the LF drops fast when the absolute UV magnitude $M_{rm UV}$ is much larger than a turn-over absolute UV magnitude $M_{rm UV}^{rm T}$. We obtain $M_{rm UV}^{rm T}gtrsim-14.6 $ (15.2) at 1 (2) $sigma$ confidence level (C.L.) for $zsim6$. In the physically-motivated analytical model, star formation in halos with circular velocity below $v_c^*$ is fully quenched if these halos are located in ionized regions. Using updated lensing models and new additional FFs data, we re-analyze previous constraints on $v_c^*$ and $f_{rm esc}$ presented by Castellano et al. 2016a (C16a) using a smaller dataset. We obtain new constraints on $v_c^*lesssim 59$ km s$^{-1}$ and $f_{rm esc}lesssim 56%$ (both at 2$sigma$ C.L.) and conclude that there is no turn-over detected so far from the analyzed FFs data. Forthcoming {it JWST} observations will be key to tight these constraints further.
We present a model for the evolution of the galaxy ultraviolet (UV) luminosity function (LF) across cosmic time where star formation is linked to the assembly of dark matter halos under the assumption of a mass dependent, but redshift independent, efficiency. We introduce a new self-consistent treatment of the halo star formation history, which allows us to make predictions at $z>10$ (lookback time $lesssim500$ Myr), when growth is rapid. With a calibration at a single redshift to set the stellar-to-halo mass ratio, and no further degrees of freedom, our model captures the evolution of the UV LF over all available observations ($0lesssim zlesssim10$). The significant drop in luminosity density of currently detectable galaxies beyond $zsim8$ is explained by a shift of star formation toward less massive, fainter galaxies. Assuming that star formation proceeds down to atomic cooling halos, we derive a reionization optical depth $tau = 0.056^{+0.007}_{-0.010}$, fully consistent with the latest Planck measurement, implying that the universe is fully reionized at $z=7.84^{+0.65}_{-0.98}$. In addition, our model naturally produces smoothly rising star formation histories for galaxies with $Llesssim L_*$ in agreement with observations and hydrodynamical simulations. Before the epoch of reionization at $z>10$ we predict the LF to remain well-described by a Schechter function, but with an increasingly steep faint-end slope ($alphasim-3.5$ at $zsim16$). Finally, we construct forecasts for surveys with JWST~and WFIRST and predict that galaxies out to $zsim14$ will be observed. Galaxies at $z>15$ will likely be accessible to JWST and WFIRST only through the assistance of strong lensing magnification.
We present a new technique to estimate the evolution of the very faint end of the UV luminosity function (LF) out to $zsim5$. Measured star formation histories (SFHs) from the fossil record of Local Group galaxies are used to reconstruct the LF down to M$_{UV}sim-5$ at $zsim5$ and M$_{UV}sim-1.5$ at $z<1$. Such faint limits are well beyond the current observational limits and are likely to remain beyond the limits of next generation facilities. The reconstructed LFs, when combined with direct measurements of the LFs at higher luminosity, are well-fit by a standard Schechter function with no evidence of a break to the faintest limits probed by this technique. The derived faint end slope, $alpha$, steepens from $approx-1.2$ at $z<1$ to $approx-1.6$ at $4<z<5$. We test the effects of burstiness in the SFHs and find the recovered LFs to be only modestly affected. Incompleteness corrections for the faintest Local Group galaxies and the (unlikely) possibility of significant luminosity-dependent destruction of dwarf galaxies between high redshift and the present epoch are important uncertainties. These and other uncertainties can be mitigated with more detailed modeling and future observations. The reconstructed faint end LF from the fossil record can therefore be a powerful and complementary probe of the high redshift faint galaxies believed to play a key role in the reionization of the Universe.
We exploit a sample of ultra-faint high-redshift galaxies (demagnified HST $H_{160}$ magnitude $>30$) in the Frontier Fields clusters A2744 and M0416 to constrain a theoretical model for the UV luminosity function (LF) in the presence of photoionization feedback. The objects have been selected on the basis of accurate photometric redshifts computed from multi-band photometry including 7 HST bands and deep $K_s$ and IRAC observations. Magnification is computed on an object-by-object basis from all available lensing models of the two clusters. We take into account source detection completeness as a function of luminosity and size, magnification effects and systematics in the lens modeling of the clusters under investigation. We find that our sample of high-$z$ galaxies constrain the cut-off halo circular velocity below which star-formation is suppressed by photo-ionization feedback to $v_c^{rm cut} < 50$ km s$^{-1}$. This circular velocity corresponds to a halo mass of $approx5.6times10^9~M_odot$ and $approx2.3times10^9~M_odot$ at $z=5$ and 10 respectively: higher mass halos can thus sustain continuous star formation activity without being quenched by external ionizing flux. More stringent constraints are prevented by the uncertainty in the modeling of the cluster lens, as embodied by systematic differences among the lens models available.
We present and discuss optical measurements of the faint end of the galaxy luminosity function down to M_R = -10 in five different local environments of varying galaxy density and morphological content. The environments we studied, in order of decreasing galaxy density, are the Virgo Cluster, the NGC 1407 Group, the Coma I Group, the Leo Group and the NGC 1023 Group. Our results come from a deep wide-angle survey with the NAOJ Subaru 8 m Telescope on Mauna Kea and are sensitive down to very faint surface-brightness levels. Galaxies were identified as group or cluster members on the basis of their surface brightness and morphology. The faintest galaxies in our sample have R ~ 22.5. There were thousands of fainter galaxies but we cannot distinguish cluster members from background galaxies at these faint limits so do not attempt to determine a luminosity function fainter than M_R = -10. In all cases, there are far fewer dwarfs than the numbers of low mass halos anticipated by cold dark matter theory. The mean logarithmic slope of the luminosity function between M_R = -18 and M_R = -10 is alpha ~ -1.2, far shallower than the cold dark matter mass function slope of alpha ~ -1.8. We would therefore need to be missing about 90 per cent of the dwarfs at the faint end of our sample in all the environments we study to achieve consistency with CDM theory.
The Grism Lens-Amplified Survey from Space (GLASS) is a Hubble Space Telescope (HST) Large Program, which will obtain 140 orbits of grism spectroscopy of the core and infall regions of 10 galaxy clusters, selected to be among the very best cosmic telescopes. Extensive HST imaging is available from many sources including the CLASH and Frontier Fields programs. We introduce the survey by analyzing spectra of faint multiply-imaged galaxies and $zgtrsim6$ galaxy candidates obtained from the first seven orbits out of fourteen targeting the core of the Frontier Fields cluster MACS0717.5+3745. Using the G102 and G141 grisms to cover the wavelength range 0.8-1.7$mu$m, we confirm 4 strongly lensed systems by detecting emission lines in each of the images. For the 9 $zgtrsim6$ galaxy candidates clear from contamination, we do not detect any emission lines down to a seven-orbit 1$sigma$ noise level of $sim$5$times$10$^{-18}$erg s$^{-1}$cm$^{-2}$. Taking lensing magnification into account, our flux sensitivity reaches $sim$0.2-5$times$10$^{-18}$erg s$^{-1}$cm$^{-2}$. These limits over an uninterrupted wavelength range rule out the possibility that the high-$z$ galaxy candidates are instead strong line emitters at lower redshift. These results show that by means of careful modeling of the background - and with the assistance of lensing magnification - interesting flux limits can be reached for large numbers of objects, avoiding pre-selection and the wavelength restrictions inherent to ground-based multi-slit spectroscopy. These observations confirm the power of slitless HST spectroscopy even in fields as crowded as a cluster core.