Do you want to publish a course? Click here

Chandra Observation of PWN G16.73+0.08 in SNR G16.7+0.1

225   0   0.0 ( 0 )
 Added by Hsiang-Kuang Chang
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present X-ray observations of PWN G16.73+0.08/SNR G16.7+0.1 using archival data of {it Chandra} ACIS. The X-ray emission peak location of this pulsar wind nebula is found to be offset by 24 arcsec from the centre of the 1.4-GHz emission of this nebula. The X-ray nebula is elongated in the direction from the X-ray peak to the 1.4-GHz emission centre. This offset suggests that G16.73+0.08 is an evolved pulsar wind nebula interacting with the supernova remnant reverse shock. We identify a point source, CXO J182058.16-142001.5, near the location of the X-ray peak. The spectrum of the X-ray nebula can be described by an absorbed power law of photon index $0.98^{+0.79}_{-0.71}$ and hydrogen column density $N_{rm H}=4.99^{+2.75}_{-2.28}times 10^{22}$ cm$^{-2}$. CXO J182058.16-142001.5 is likely a pulsar. We estimate its spin-down power to be about $2.6times 10 ^{36}$ erg s$^{-1}$. Assuming its age at 3000 and 10,000 years, its dipole magnetic field strength at the polar surface is estimated to be about $4.2 times 10^{13}$ G and $1.3 times 10^{13}$ G, respectively.



rate research

Read More

We have observed the Galactic supernova remnant G16.7+0.1 for 13 ks using the EPIC cameras aboard the XMM-Newton X-ray Observatory, producing the first detection of the SNR outside of the radio band. G16.7+0.1 is one of the faintest radio synchrotron nebulae yet detected, although the core-to-shell flux ratio at 6 cm is typical of composite SNRs. The distance to the object is unknown. Our image is seriously contaminated by single-reflection arcs from the X-ray binary GX17+2, which lies just outside the field of view. Nonetheless, the remnants synchrotron core is clearly detected. We report on the spectrum and intensity of the core emission as well as on our search for emission from the thermal shell, and describe the constraints these observations place on the SNRs distance, age, and central pulsar properties.
268 - W.W. Tian , H. Zhu , M.F. Zhang 2019
We build HI absorption spectra towards Supernova Remnant (SNRs) G16.7+0.1 and G15.9+0.2 using the THOR survey data. With the absorption spectra, we give a new distance range of 7 to 16 kpc for G15.9+0.2. We also resolve the near/far-side distance ambiguity of G16,7+0.1 and confirm its kinematic distance of about 14 kpc. In addition, we analyze the CO (J=3-2) spectra towards G16.7+0.1 and find obvious CO emission at the 20 kms$^{-1}$ OH 1720 MHz maser site. This supports Reynoso and Mangum (2000)s suggestions that the velocity difference between the maser and southern molecular cloud is caused by the shock acceleration. We discuss the impact of the distances on other physical parameters of the two SNRs.
136 - B. M. Gaensler MIT 2001
We present observations with the Chandra X-ray Observatory of the pulsar wind nebula (PWN) within the supernova remnant G0.9+0.1. At Chandras high resolution, the PWN has a clear axial symmetry; a faint X-ray point source lying along the symmetry axis possibly corresponds to the pulsar itself. We argue that the nebular morphology can be explained in terms of a torus of emission in the pulsars equatorial plane and a jet directed along the pulsar spin axis, as is seen in the X-ray nebulae powered by other young pulsars. A bright clump of emission within the PWN breaks the axisymmetry and may correspond to an intermediate-latitude feature in the pulsar wind.
We present new high angular resolution and high sensitivity radio observations toward the neutron star RX J0007.0+7303, carried out with the Karl G. Jansky Very Large Array at 1.5 GHz. This source powers a pulsar wind nebula (PWN) only detected in the X-ray and gamma-ray domains. The new high quality radio observations do not show any evidence of a source, either point-like or extended, that could be interpreted as the radio counterpart of the high energy PWN, down to a noise level of 15 mJy/beam.
157 - J. Eagle , S. Marchesi , M. Ajello 2020
We report on the investigation of a very high energy (VHE), Galactic gamma-ray source recently discovered at >50GeV using the Large Area Telescope (LAT) on board the Fermi Gamma-Ray Space Telescope. This object, 2FHL J1703.4-4145, displays a very hard >50GeV spectrum with a photon index ~1.2 in the 2FHL catalog and, as such, is one of the most extreme sources in the 2FHL sub-sample of Galactic objects. A detailed analysis of the available multi-wavelength data shows that this source is located on the western edge of the supernova remnant (SNR) G344.7--0.1, along with extended TeV source, HESS J1702-420. The observations and the spectral energy distribution modeling support a scenario where this gamma-ray source is the byproduct of the interaction between the SNR shock and the dense surrounding medium, with escaping cosmic rays (CRs) diffusing into the dense environment and interacting with a large local cloud, generating the observed TeV emission. If confirmed, an interaction between the SNR CRs and a nearby cloud would make 2FHL J1703.4-4145 another promising candidate for efficient particle acceleration of the 2FHL Galactic sample, following the first candidate from our previous investigation of a likely shock-cloud interaction occurring on the West edge of the Vela SNR.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا