Do you want to publish a course? Click here

Gamma-ray emission revealed at the western edge of SNR G344.7-0.1

158   0   0.0 ( 0 )
 Added by Jordan Eagle
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

We report on the investigation of a very high energy (VHE), Galactic gamma-ray source recently discovered at >50GeV using the Large Area Telescope (LAT) on board the Fermi Gamma-Ray Space Telescope. This object, 2FHL J1703.4-4145, displays a very hard >50GeV spectrum with a photon index ~1.2 in the 2FHL catalog and, as such, is one of the most extreme sources in the 2FHL sub-sample of Galactic objects. A detailed analysis of the available multi-wavelength data shows that this source is located on the western edge of the supernova remnant (SNR) G344.7--0.1, along with extended TeV source, HESS J1702-420. The observations and the spectral energy distribution modeling support a scenario where this gamma-ray source is the byproduct of the interaction between the SNR shock and the dense surrounding medium, with escaping cosmic rays (CRs) diffusing into the dense environment and interacting with a large local cloud, generating the observed TeV emission. If confirmed, an interaction between the SNR CRs and a nearby cloud would make 2FHL J1703.4-4145 another promising candidate for efficient particle acceleration of the 2FHL Galactic sample, following the first candidate from our previous investigation of a likely shock-cloud interaction occurring on the West edge of the Vela SNR.



rate research

Read More

Aims. We report results of an X-ray study of the supernova remnant (SNR) G344.7-0.1 and the point-like X-ray source located at the geometrical center of the SNR radio structure. Methods. The morphology and spectral properties of the remnant and the central X-ray point-like source were studied using data from the XMM-Newton and Chandra satellites. Archival radio data and infrared Spitzer observations at 8 and 24 $mu$m were used to compare and study its multi-band properties at different wavelengths. Results. The XMM-Newton and Chandra observations reveal that the overall X-ray emission of G344.7-0.1 is extended and correlates very well with regions of bright radio and infrared emission. The X-ray spectrum is dominated by prominent atomic emission lines. These characteristics suggest that the X-ray emission originated in a thin thermal plasma, whose radiation is represented well by a plane-parallel shock plasma model (PSHOCK). Our study favors the scenario in which G344.7-0.1 is a 6 x 10^3 year old SNR expanding in a medium with a high density gradient and is most likely encountering a molecular cloud on the western side. In addition, we report the discovery of a soft point-like X-ray source located at the geometrical center of the radio SNR structure. The object presents some characteristics of the so-called compact central objects (CCO). However, its neutral hydrogen absorption column (N_{H}) is inconsistent with that of the SNR. Coincident with the position of the source, we found infrared and optical objects with typical early-K star characteristics. The X-ray source may be a foreground star or the CCO associated with the SNR. If this latter possibility were confirmed, the point-like source would be the farthest CCO detected so far and the eighth member of the new population of isolated and weakly magnetized neutron stars.
Supernova remnants (SNRs) have emerged as one of the largest source classes in very-high-energy (VHE; E>0.1,TeV) astronomy. Many of the now known VHE gamma-ray emitting SNRs have been discovered by the H.E.S.S. imaging Cherenkov telescope array, thanks to its unique access to the inner galaxy. Statistically-significant emission of VHE gamma rays has now been detected from the direction of the supernova remnant G15.4+0.1. While the centroids of the H.E.S.S. source and the shell-type SNR are compatible, the VHE morphology suggests a center-dominated source at TeV energies, something which is at odds with the shell-like morphology observed at radio frequencies. This suggests that H.E.S.S. may be observing TeV emission from a previously unknown pulsar wind nebula (PWN) located within the boundaries of the radio shell. If this interpretation is correct, G15.4+0.1 would in fact be a composite SNR, the first case in which an SNR is identified as a composite on the basis of VHE gamma-ray observations. Archival data from MAGPIS gives exciting hints that there is radio emission from the central parts of the remnant, giving support to this hypothesis. Unfortunately, image artefacts from a nearby strong radio source produce considerable uncertainties in the radio analysis. Additional observations in both the radio and X-ray are needed to confirm the composite nature of G15.4+0.1 suggested by H.E.S.S.
Supernova remnants (SNRs) are believed to be the main sources of Galactic cosmic rays. Molecular clouds associated with SNRs can produce gamma-ray emission through the interaction of accelerated particles with the concentrated gas. The middle aged SNR W28, for its associated system of dense molecular clouds, provides an excellent opportunity to test this hypothesis. We present the AGILE/GRID observations of SNR W28, and compare them with observations at other wavelengths (TeV and 12CO J=1-->0 molecular line emission). The gamma-ray flux detected by AGILE from the dominant source associated with W28 is (14 +- 5) 10^-8 ph cm^-2 s^-1 for E > 400 MeV. This source is positionally well correlated with the TeV emission observed by the HESS telescope. The local variations of the GeV to TeV flux ratio suggest a difference between the CR spectra of the north-west and south molecular cloud complexes. A model based on a hadronic-induced interaction and diffusion with two molecular clouds at different distances from the W28 shell can explain both the morphological and spectral features observed by AGILE in the MeV-GeV energy range and by the HESS telescope in the TeV energy range. The combined set of AGILE and H.E.S.S. data strongly support a hadronic model for the gamma-ray production in W28.
388 - V. A. Acciari , E. Aliu , T. Arlen 2010
We report the discovery of very high energy gamma-ray emission from the direction of the SNR G54.1+0.3 using the VERITAS ground-based gamma-ray observatory. The TeV signal has an overall significance of 6.8$sigma$ and appears point-like given the 5$^{arcminute}$ resolution of the instrument. The integral flux above 1 TeV is 2.5% of the Crab Nebula flux and significant emission is measured between 250 GeV and 4 TeV, well described by a power-law energy spectrum dN/dE $sim$ E$^{-Gamma}$ with a photon index $Gamma= 2.39pm0.23_{stat}pm0.30_{sys}$. We find no evidence of time variability among observations spanning almost two years. Based on the location, the morphology, the measured spectrum, the lack of variability and a comparison with similar systems previously detected in the TeV band, the most likely counterpart of this new VHE gamma-ray source is the PWN in the SNR G54.1+0.3. The measured X-ray to VHE gamma-ray luminosity ratio is the lowest among all the nebulae supposedly driven by young rotation-powered pulsars, which could indicate a particle-dominated PWN.
72 - G. Piano , M. Cardillo , M. Pilia 2019
We present a study on the gamma-ray emission detected by the AGILE-GRID from the region of the SNR G78.2+2.1 (Gamma Cygni). In order to investigate the possible presence of gamma rays associated with the SNR below 1 GeV, it is necessary to analyze the gamma-ray radiation underlying the strong emission from the pulsar PSR J2021+4026, which totally dominates the field. An off-pulse analysis has been carried out, by considering only the emission related to the pulsar off-pulse phase of the AGILE-GRID light curve. We found that the resulting off-pulsed emission in the region of the SNR - detected by the AGILE-GRID above 400 MeV - partially overlaps the radio shell boundary. By analyzing the averaged emission on the whole angular extent of the SNR, we found that a lepton-dominated double population scenario can account for the radio and gamma-ray emission from the source. In particular, the MeV-GeV averaged emission can be explained mostly by Bremsstrahlung processes in a high density medium, whereas the GeV-TeV radiation by both Bremsstrahlung (E < 250 GeV) and inverse Compton processes (E > 250 GeV) in a lower density medium.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا