Do you want to publish a course? Click here

XMM-Newton imaging of V1818 Ori: a young stellar group on the eastern edge of the Kappa Ori ring

272   0   0.0 ( 0 )
 Added by Ignazio Pillitteri
 Publication date 2017
  fields Physics
and research's language is English
 Authors I. Pillitteri




Ask ChatGPT about the research

We present the results of a 40 ks XMM-Newton observation centered on the variable star V1818 Ori. Using a combination of the XMM-Newton and AllWISE catalog data, we identify a group of about 31 young stellar objects around V1818 Ori. This group is coincident with the eastern edge of the dust ring surrounding Kappa Ori. Previously, we concluded that the young stellar objects on the western side of ring were formed in an episode of star formation that started 3-5 Myr ago, and are at a distance similar to that of kappa Ori (250-280 pc) and in the foreground to the Orion A cloud. Here we use the XMM-Newton observation to calculate X-ray fluxes and luminosities of the young stars around V1818 Ori. We find that their X-ray luminosity function (XLF), calculated for a distance of ~270 pc, matches the XLF of the YSOs west of Kappa Ori. We rule out that this group of young stars is associated to Mon R2 as assumed in the literature, but rather they are part of the same Kappa Oris ring stellar population.



rate research

Read More

405 - I. Pillitteri 2016
X-rays are a powerful probe of activity in early stages of star formation. They allow us to identify young stars even after they have lost the IR signatures of circumstellar disks and provide constraints on their distance. Here we report on XMM-Newton observations which detect 121 young stellar objects (YSOs) in two fields between L1641S and $kappa$ Ori. These observations extend the Survey of Orion A with XMM and Spitzer (SOXS). The YSOs are contained in a ring of gas and dust apparent at millimeter wavelengths, and in far-IR and near-IR surveys. The X-ray luminosity function of the young stellar objects detected in the two fields indicates a distance of 250-280 pc, much closer than the Orion A cloud and similar to distance estimates of $kappa$ Ori. We propose that the ring is a 5-8 pc diameter shell that has been swept up by $kappa$ Ori. This ring contains several groups of stars detected by Spitzer and WISE including one surrounding the Herbig Ae/Be stars V1818 Ori. In this interpretation, the $kappa$ Ori ring is one of several shells swept up by massive stars within the Orion Eridanus Superbubble, and is unrelated to the southern portion of Orion A / L1641 S.
Like other young stellar objects (YSOs), FU Ori-type stars have been detected as strong X-ray emitters. However, little is known about how the outbursts of these stars affect their X-ray properties. We assemble available X-ray data from XMM Newton and Chandra observations of 16 FU Ori stars, including a new XMM Newton observation of Gaia 17bpi during its optical rise phase. Of these stars, six were detected at least once, while 10 were non-detections, for which we calculate upper limits on intrinsic X-ray luminosity ($L_X$) as a function of plasma temperature ($kT$) and column density ($N_H$). The detected FU Ori stars tend to be more X-ray luminous than typical for non-outbursting YSOs, based on comparison to a sample of low-mass stars in the Orion Nebula Cluster. FU Ori stars with high $L_X$ have been observed both at the onset of their outbursts and decades later. We use the Kaplan-Meier estimator to investigate whether the higher X-ray luminosities for FU Ori stars is characteristic or a result of selection effects, and we find the difference to be statistically significant ($p<0.01$) even when non-detections are taken into account. The additional X-ray luminosity of FU Ori stars relative to non-outbursting YSOs cannot be explained by accretion shocks, given the high observed plasma temperatures. This suggests that, for many FU Ori stars, either 1) the outburst leads to a restructuring of the magnetosphere in a way that enhances X-ray emission, or 2) FU Ori outbursts are more likely to occur among YSOs with the highest quiescent X-ray luminosity.
EXor objects are young variables that show episodic variations of brightness commonly associated to enhanced accretion outbursts. With the aim of investigating the long-term photometric behaviour of a few EXor sources, we present here data from the archival plates of the Asiago Observatory, showing the Orion field where the three EXors V1118, V1143, and NY are located. A total of 484 plates were investigated, providing a total of more than 1000 magnitudes for the three stars, which cover a period of about 35 yrs between 1959 to 1993. We then compared our data with literature data. Apart from a newly discovered flare-up of V1118, we identify the same outbursts already known, but we provide two added values: (i) a long-term sampling of the quiescence phase; and (ii) repeated multi-colour observations (BVRI bands). The former allows us to give a reliable characterisation of the quiescence, which represents a unique reference for studies that will analyze future outbursts and the physical changes induced by these events. The latter is useful for confirming whether the intermittent increases of brightness are accretion-driven (as in the case of V1118), or extinction-driven (as in the case of V1143). Accordingly, doubts arise about the V1143 classification as a pure EXor object. Finally, although our plates do not separate NY Ori and the star very close to it, they indicate that this EXor did not undergo any major outbursts during our 40 yrs of monitoring.
54 - Genaro Suarez 2019
The stellar initial mass function (IMF) is an essential input for many astrophysical studies but only in a few cases it has been determined over the whole cluster mass range, limiting the conclusions about its nature. The 25 Orionis group (25 Ori) is an excellent laboratory to investigate the IMF across the entire mass range of the population, from planetary-mass objects to intermediate/high-mass stars. We combine new deep optical photometry with optical and near-infrared data from the literature to select 1687 member candidates covering a 1.1$^circ$ radius area in 25 Ori. With this sample we derived the 25 Ori system IMF from 0.012 to 13.1 $M_odot$. This system IMF is well described by a two-segment power-law with $Gamma=-0.74pm0.04$ for $m<0.4 M_odot$ and $Gamma=1.50pm0.11$ for $mge0.4 M_odot$. It is also well described over the whole mass range by a tapered power-law function with $Gamma=1.10pm0.09$, $m_p=0.31pm0.03$ and $beta=2.11pm0.09$. The best lognormal representation of the system IMF has $m_c=0.31pm0.04$ and $sigma=0.46pm0.05$ for $m<1 M_odot$. This system IMF does not present significant variations with the radii. We compared the resultant system IMF as well as the BD/star ratio of $0.16pm0.03$ we estimated for 25 Ori with that of other stellar regions with diverse conditions and found no significant discrepancies. These results support the idea that general star formation mechanisms are probably not strongly dependent to environmental conditions. We found that the substellar and stellar objects in 25 Ori have similar spatial distributions and confirmed that 25 Ori is a gravitationally unbound stellar association.
Individual outbursting young stars are important laboratories for studying the physics of episodic accretion and the extent to which this phenomenon can explain the luminosity distribution of protostars. We present new and archival data for V2775 Ori (HOPS 223), a protostar in the L 1641 region of the Orion molecular clouds that was discovered by Caratti o Garatti et al. (2011) to have recently undergone an order-of-magnitude increase in luminosity. Our near-infrared spectra of the source have strong blueshifted He I 10830 absorption, strong H2O and CO absorption, and no H I emission, all typical of FU Orionis sources. With data from IRTF, 2MASS, HST, Spitzer, WISE, Herschel, and APEX that span from 1 to 70 microns pre-outburst and from 1 to 870 microns post-outburst, we estimate that the outburst began between 2005 April and 2007 March. We also model the pre- and post-outburst spectral energy distributions of the source, finding it to be in the late stages of accreting its envelope with a disk-to-star accretion rate that increased from about 2x10^-6 M_sun/yr to about 10^-5 M_sun/yr during the outburst. The post-outburst luminosity at the epoch of the FU Orionis-like near-IR spectra is 28 L_sun, making V2775 Ori the least luminous documented FU Orionis outburster with a protostellar envelope. The existence of low-luminosity outbursts supports the notion that a range of episiodic accretion phenomena can partially explain the observed spread in protostellar luminosities.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا