No Arabic abstract
We explore the use of weak quantum measurements for single-qubit quantum state tomography processes. Weak measurements are those where the coupling between the qubit and the measurement apparatus is weak; this results in the quantum state being disturbed less than in the case of a projective measurement. We employ a weak measurement tomography protocol developed by Das and Arvind, which they claim offers a new method of extracting information from quantum systems. We test the Das-Arvind scheme for various measurement strengths, and ensemble sizes, and reproduce their results using a sequential stochastic simulation. Lastly, we place these results in the context of current understanding of weak and projective measurements.
The standard method of measuring quantum wavefunction is the technique of {it indirect} quantum state tomography. Owing to conceptual novelty and possible advantages, an alternative {it direct} scheme was proposed and demonstrated recently in quantum optics system. In this work we present a study on the direct scheme of measuring qubit state in the circuit QED system, based on weak measurement and weak value concepts. To be applied to generic parameter conditions, our formulation and analysis are carried out for finite strength weak measurement, and in particular beyond the bad-cavity and weak-response limits. The proposed study is accessible to the present state-of-the-art circuit-QED experiments.
We present an example of quantum process tomography performed on a single solid state qubit. The qubit used is two energy levels of the triplet state in the Nitrogen-Vacancy defect in Diamond. Quantum process tomography is applied to a qubit which has been allowed to decohere for three different time periods. In each case the process is found in terms of the $chi$ matrix representation and the affine map representation. The discrepancy between experimentally estimated process and the closest physically valid process is noted.
The tomographic reconstruction of the state of a quantum-mechanical system is an essential component in the development of quantum technologies. We present an overview of different tomographic methods for determining the quantum-mechanical density matrix of a single qubit: (scaled) direct inversion, maximum likelihood estimation (MLE), minimum Fisher information distance, and Bayesian mean estimation (BME). We discuss the different prior densities in the space of density matrices, on which both MLE and BME depend, as well as ways of including experimental errors and of estimating tomography errors. As a measure of the accuracy of these methods we average the trace distance between a given density matrix and the tomographic density matrices it can give rise to through experimental measurements. We find that the BME provides the most accurate estimate of the density matrix, and suggest using either the pure-state prior, if the system is known to be in a rather pure state, or the Bures prior if any state is possible. The MLE is found to be slightly less accurate. We comment on the extrapolation of these results to larger systems.
The action of qubit channels on projective measurements on a qubit state is used to establish an equivalence between channels and properties of generalized measurements characterized by bias and sharpness parameters. This can be interpreted as shifting the description of measurement dynamics from the Schrodinger to the Heisenberg picture. In particular, unital quantum channels are shown to induce unbiased measurements. The Markovian channels are found to be equivalent to measurements for which sharpness is a monotonically decreasing function of time. These results are illustrated by considering various noise channels. Further, the effect of bias and sharpness parameters on the energy cost of a measurement and its interplay with non-Markovianity of dynamics is also discussed
Full quantum state tomography is used to characterize the state of an ensemble based qubit implemented through two hyperfine levels in Pr3+ ions, doped into a Y2SiO5 crystal. We experimentally verify that single-qubit rotation errors due to inhomogeneities of the ensemble can be suppressed using the Roos-Moelmer dark state scheme. Fidelities above >90%, presumably limited by excited state decoherence, were achieved. Although not explicitly taken care of in the Roos-Moelmer scheme, it appears that also decoherence due to inhomogeneous broadening on the hyperfine transition is largely suppressed.