Do you want to publish a course? Click here

Quantum State Tomography of a Single Qubit: Comparison of Methods

249   0   0.0 ( 0 )
 Added by Roman Schmied
 Publication date 2014
  fields Physics
and research's language is English
 Authors Roman Schmied




Ask ChatGPT about the research

The tomographic reconstruction of the state of a quantum-mechanical system is an essential component in the development of quantum technologies. We present an overview of different tomographic methods for determining the quantum-mechanical density matrix of a single qubit: (scaled) direct inversion, maximum likelihood estimation (MLE), minimum Fisher information distance, and Bayesian mean estimation (BME). We discuss the different prior densities in the space of density matrices, on which both MLE and BME depend, as well as ways of including experimental errors and of estimating tomography errors. As a measure of the accuracy of these methods we average the trace distance between a given density matrix and the tomographic density matrices it can give rise to through experimental measurements. We find that the BME provides the most accurate estimate of the density matrix, and suggest using either the pure-state prior, if the system is known to be in a rather pure state, or the Bures prior if any state is possible. The MLE is found to be slightly less accurate. We comment on the extrapolation of these results to larger systems.



rate research

Read More

We present an example of quantum process tomography performed on a single solid state qubit. The qubit used is two energy levels of the triplet state in the Nitrogen-Vacancy defect in Diamond. Quantum process tomography is applied to a qubit which has been allowed to decohere for three different time periods. In each case the process is found in terms of the $chi$ matrix representation and the affine map representation. The discrepancy between experimentally estimated process and the closest physically valid process is noted.
Full quantum state tomography is used to characterize the state of an ensemble based qubit implemented through two hyperfine levels in Pr3+ ions, doped into a Y2SiO5 crystal. We experimentally verify that single-qubit rotation errors due to inhomogeneities of the ensemble can be suppressed using the Roos-Moelmer dark state scheme. Fidelities above >90%, presumably limited by excited state decoherence, were achieved. Although not explicitly taken care of in the Roos-Moelmer scheme, it appears that also decoherence due to inhomogeneous broadening on the hyperfine transition is largely suppressed.
98 - Shoumik Chowdhury 2017
We explore the use of weak quantum measurements for single-qubit quantum state tomography processes. Weak measurements are those where the coupling between the qubit and the measurement apparatus is weak; this results in the quantum state being disturbed less than in the case of a projective measurement. We employ a weak measurement tomography protocol developed by Das and Arvind, which they claim offers a new method of extracting information from quantum systems. We test the Das-Arvind scheme for various measurement strengths, and ensemble sizes, and reproduce their results using a sequential stochastic simulation. Lastly, we place these results in the context of current understanding of weak and projective measurements.
Semiconductor quantum dots are probably the preferred choice for interfacing anchored, matter spin qubits and flying photonic qubits. While full tomography of a flying qubit or light polarization is in general straightforward, matter spin tomography is a challenging and resource-consuming task. Here we present a novel all-optical method for conducting full tomography of quantum-dot-confined spins. Our method is applicable for electronic spin configurations such as the conduction-band electron, the valence-band hole, and for electron-hole pairs such as the bright and the dark exciton. We excite the spin qubit using short resonantly tuned, polarized optical pulse, which coherently converts the qubit to an excited qubit that decays by emitting a polarized single-photon. We perform the tomography by using two different orthogonal, linearly polarized excitations, followed by time-resolved measurements of the degree of circular polarization of the emitted light from the decaying excited qubit. We demonstrate our method on the dark exciton spin state with fidelity of 0.94, mainly limited by the accuracy of our polarization analyzers.
We demonstrate high-fidelity Zeeman qubit state detection in a single trapped 88 Sr+ ion. Qubit readout is performed by shelving one of the qubit states to a metastable level using a narrow linewidth diode laser at 674 nm followed by state-selective fluorescence detection. The average fidelity reached for the readout of the qubit state is 0.9989(1). We then measure the fidelity of state tomography, averaged over all possible single-qubit states, which is 0.9979(2). We also fully characterize the detection process using quantum process tomography. This readout fidelity is compatible with recent estimates of the detection error-threshold required for fault-tolerant computation, whereas high-fidelity state tomography opens the way for high-precision quantum process tomography.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا