Do you want to publish a course? Click here

On Strong Equilibria and Improvement Dynamics in Network Creation Games

144   0   0.0 ( 0 )
 Added by Bart de Keijzer
 Publication date 2017
and research's language is English




Ask ChatGPT about the research

We study strong equilibria in network creation games. These form a classical and well-studied class of games where a set of players form a network by buying edges to their neighbors at a cost of a fixed parameter $alpha$. The cost of a player is defined to be the cost of the bought edges plus the sum of distances to all the players in the resulting graph. We identify and characterize various structural properties of strong equilibria, which lead to a characterization of the set of strong equilibria for all $alpha$ in the range $(0,2)$. For $alpha > 2$, Andelman et al. (2009) prove that a star graph in which every leaf buys one edge to the center node is a strong equilibrium, and conjecture that in fact any star is a strong equilibrium. We resolve this conjecture in the affirmative. Additionally, we show that when $alpha$ is large enough ($geq 2n$) there exist non-star trees that are strong equilibria. For the strong price of anarchy, we provide precise expressions when $alpha$ is in the range $(0,2)$, and we prove a lower bound of $3/2$ when $alpha geq 2$. Lastly, we aim to characterize under which conditions (coalitional) improvement dynamics may converge to a strong equilibrium. To this end, we study the (coalitional) finite improvement property and (coalitional) weak acyclicity property. We prove various conditions under which these properties do and do not hold. Some of these results also hold for the class of pure Nash equilibria.



rate research

Read More

Network Creation Games(NCGs) model the creation of decentralized communication networks like the Internet. In such games strategic agents corresponding to network nodes selfishly decide with whom to connect to optimize some objective function. Past research intensively analyzed models where the agents strive for a central position in the network. This models agents optimizing the network for low-latency applications like VoIP. However, with todays abundance of streaming services it is important to ensure that the created network can satisfy the increased bandwidth demand. To the best of our knowledge, this natural problem of the decentralized strategic creation of networks with sufficient bandwidth has not yet been studied. We introduce Flow-Based NCGs where the selfish agents focus on bandwidth instead of latency. In essence, budget-constrained agents create network links to maximize their minimum or average network flow value to all other network nodes. Equivalently, this can also be understood as agents who create links to increase their connectivity and thus also the robustness of the network. For this novel type of NCG we prove that pure Nash equilibria exist, we give a simple algorithm for computing optimal networks, we show that the Price of Stability is 1 and we prove an (almost) tight bound of 2 on the Price of Anarchy. Last but not least, we show that our models do not admit a potential function.
In this paper we extend a popular non-cooperative network creation game (NCG) to allow for disconnected equilibrium networks. There are n players, each is a vertex in a graph, and a strategy is a subset of players to build edges to. For each edge a player must pay a cost alpha, and the individual cost for a player represents a trade-off between edge costs and shortest path lengths to all other players. We extend the model to a penalized game (PCG), for which we reduce the penalty counted towards the individual cost for a pair of disconnected players to a finite value beta. Our analysis concentrates on existence, structure, and cost of disconnected Nash and strong equilibria. Although the PCG is not a potential game, pure Nash equilibria always and pure strong equilibria very often exist. We provide tight conditions under which disconnected Nash (strong) equilibria can evolve. Components of these equilibria must be Nash (strong) equilibria of a smaller NCG. However, in contrast to the NCG, for almost all parameter values no tree is a stable component. Finally, we present a detailed characterization of the price of anarchy that reveals cases in which the price of anarchy is Theta(n) and thus several orders of magnitude larger than in the NCG. Perhaps surprisingly, the strong price of anarchy increases to at most 4. This indicates that global communication and coordination can be extremely valuable to overcome socially inferior topologies in distributed selfish network design.
242 - Mona Rahn , Guido Schafer 2015
We consider polymatrix coordination games with individual preferences where every player corresponds to a node in a graph who plays with each neighbor a separate bimatrix game with non-negative symmetric payoffs. In this paper, we study $alpha$-approximate $k$-equilibria of these games, i.e., outcomes where no group of at most $k$ players can deviate such that each member increases his payoff by at least a factor $alpha$. We prove that for $alpha ge 2$ these games have the finite coalitional improvement property (and thus $alpha$-approximate $k$-equilibria exist), while for $alpha < 2$ this property does not hold. Further, we derive an almost tight bound of $2alpha(n-1)/(k-1)$ on the price of anarchy, where $n$ is the number of players; in particular, it scales from unbounded for pure Nash equilibria ($k = 1)$ to $2alpha$ for strong equilibria ($k = n$). We also settle the complexity of several problems related to the verification and existence of these equilibria. Finally, we investigate natural means to reduce the inefficiency of Nash equilibria. Most promisingly, we show that by fixing the strategies of $k$ players the price of anarchy can be reduced to $n/k$ (and this bound is tight).
99 - Erman Acar , Reshef Meir 2020
We propose a simple uncertainty modification for the agent model in normal-form games; at any given strategy profile, the agent can access only a set of possible profiles that are within a certain distance from the actual action profile. We investigate the various instantiations in which the agent chooses her strategy using well-known rationales e.g., considering the worst case, or trying to minimize the regret, to cope with such uncertainty. Any such modification in the behavioral model naturally induces a corresponding notion of equilibrium; a distance-based equilibrium. We characterize the relationships between the various equilibria, and also their connections to well-known existing solution concepts such as Trembling-hand perfection. Furthermore, we deliver existence results, and show that for some class of games, such solution concepts can actually lead to better outcomes.
We study the problem of checking for the existence of constrained pure Nash equilibria in a subclass of polymatrix games defined on weighted directed graphs. The payoff of a player is defined as the sum of nonnegative rational weights on incoming edges from players who picked the same strategy augmented by a fixed integer bonus for picking a given strategy. These games capture the idea of coordination within a local neighbourhood in the absence of globally common strategies. We study the decision problem of checking whether a given set of strategy choices for a subset of the players is consistent with some pure Nash equilibrium or, alternatively, with all pure Nash equilibria. We identify the most natural tractable cases and show NP or coNP-completness of these problems already for unweighted DAGs.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا