Do you want to publish a course? Click here

Distance-based Equilibria in Normal-Form Games

100   0   0.0 ( 0 )
 Added by Erman Acar
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

We propose a simple uncertainty modification for the agent model in normal-form games; at any given strategy profile, the agent can access only a set of possible profiles that are within a certain distance from the actual action profile. We investigate the various instantiations in which the agent chooses her strategy using well-known rationales e.g., considering the worst case, or trying to minimize the regret, to cope with such uncertainty. Any such modification in the behavioral model naturally induces a corresponding notion of equilibrium; a distance-based equilibrium. We characterize the relationships between the various equilibria, and also their connections to well-known existing solution concepts such as Trembling-hand perfection. Furthermore, we deliver existence results, and show that for some class of games, such solution concepts can actually lead to better outcomes.



rate research

Read More

Despite the many recent practical and theoretical breakthroughs in computational game theory, equilibrium finding in extensive-form team games remains a significant challenge. While NP-hard in the worst case, there are provably efficient algorithms for certain families of team game. In particular, if the game has common external information, also known as A-loss recall -- informally, actions played by non-team members (i.e., the opposing team or nature) are either unknown to the entire team, or common knowledge within the team -- then polynomial-time algorithms exist (Kaneko and Kline, 1995). In this paper, we devise a completely new algorithm for solving team games. It uses a tree decomposition of the constraint system representing each teams strategy to reduce the number and degree of constraints required for correctness (tightness of the mathematical program). Our algorithm reduces the problem of solving team games to a linear program with at most $NW^{w+O(1)}$ nonzero entries in the constraint matrix, where $N$ is the size of the game tree, $w$ is a parameter that depends on the amount of uncommon external information, and $W$ is the treewidth of the tree decomposition. In public-action games, our program size is bounded by the tighter $tilde O(3^t 2^{t(n-1)}NW)$ for teams of $n$ players with $t$ types each. Since our algorithm describes the polytope of correlated strategies directly, we get equilibrium finding in correlated strategies for free -- instead of, say, having to run a double oracle algorithm. We show via experiments on a standard suite of games that our algorithm achieves state-of-the-art performance on all benchmark game classes except one. We also present, to our knowledge, the first experiments for this setting where more than one team has more than one member.
227 - Mona Rahn , Guido Schafer 2015
We consider polymatrix coordination games with individual preferences where every player corresponds to a node in a graph who plays with each neighbor a separate bimatrix game with non-negative symmetric payoffs. In this paper, we study $alpha$-approximate $k$-equilibria of these games, i.e., outcomes where no group of at most $k$ players can deviate such that each member increases his payoff by at least a factor $alpha$. We prove that for $alpha ge 2$ these games have the finite coalitional improvement property (and thus $alpha$-approximate $k$-equilibria exist), while for $alpha < 2$ this property does not hold. Further, we derive an almost tight bound of $2alpha(n-1)/(k-1)$ on the price of anarchy, where $n$ is the number of players; in particular, it scales from unbounded for pure Nash equilibria ($k = 1)$ to $2alpha$ for strong equilibria ($k = n$). We also settle the complexity of several problems related to the verification and existence of these equilibria. Finally, we investigate natural means to reduce the inefficiency of Nash equilibria. Most promisingly, we show that by fixing the strategies of $k$ players the price of anarchy can be reduced to $n/k$ (and this bound is tight).
We study the problem of checking for the existence of constrained pure Nash equilibria in a subclass of polymatrix games defined on weighted directed graphs. The payoff of a player is defined as the sum of nonnegative rational weights on incoming edges from players who picked the same strategy augmented by a fixed integer bonus for picking a given strategy. These games capture the idea of coordination within a local neighbourhood in the absence of globally common strategies. We study the decision problem of checking whether a given set of strategy choices for a subset of the players is consistent with some pure Nash equilibrium or, alternatively, with all pure Nash equilibria. We identify the most natural tractable cases and show NP or coNP-completness of these problems already for unweighted DAGs.
In this paper, we consider the problem of wireless power control in an interference channel where transmitters aim to maximize their own benefit. When the individual payoff or utility function is derived from the transmission efficiency and the spent power, previous works typically study the Nash equilibrium of the resulting power control game. We propose to introduce concepts of correlated and communication equilibria from game theory to find efficient solutions (compared to the Nash equilibrium) for this problem. Communication and correlated equilibria are analyzed for the power control game, and we provide algorithms that can achieve these equilibria. Simulation results demonstrate that the correlation is beneficial under some settings, and the players achieve better payoffs.
In this paper we extend a popular non-cooperative network creation game (NCG) to allow for disconnected equilibrium networks. There are n players, each is a vertex in a graph, and a strategy is a subset of players to build edges to. For each edge a player must pay a cost alpha, and the individual cost for a player represents a trade-off between edge costs and shortest path lengths to all other players. We extend the model to a penalized game (PCG), for which we reduce the penalty counted towards the individual cost for a pair of disconnected players to a finite value beta. Our analysis concentrates on existence, structure, and cost of disconnected Nash and strong equilibria. Although the PCG is not a potential game, pure Nash equilibria always and pure strong equilibria very often exist. We provide tight conditions under which disconnected Nash (strong) equilibria can evolve. Components of these equilibria must be Nash (strong) equilibria of a smaller NCG. However, in contrast to the NCG, for almost all parameter values no tree is a stable component. Finally, we present a detailed characterization of the price of anarchy that reveals cases in which the price of anarchy is Theta(n) and thus several orders of magnitude larger than in the NCG. Perhaps surprisingly, the strong price of anarchy increases to at most 4. This indicates that global communication and coordination can be extremely valuable to overcome socially inferior topologies in distributed selfish network design.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا