A large distance propagation in turbulent atmosphere results in disintegration of laser beam into speckles. We find that the most intense speckle approximately preserves both the Gaussian shape and the diameter of the initial collimated beam while loosing energy during propagation. One per 1000 of atmospheric realizations produces at 7km distance an intense speckle above 20% of the initial power. Such optimal realizations create effective extended lenses focusing the intense speckle beyond the diffraction limit of vacuum propagation. Atmospheric realizations change every several milliseconds. We propose to use intense speckles to greatly increase the time-averaged power delivery to the target plane by triggering the pulsed laser operations only at times of optimal realizations. Resulting power delivery and laser irradiance at the intense speckles well exceeds both intensity of diffraction-limited beam and intensity averaged over typical realizations.
We numerically analyze a delay differential equation model of a short-cavity semiconductor laser with an intracavity frequency swept filter and reveal a complex bifurcation structure responsible for the asymmetry of the output characteristics of this laser. We show that depending on the direction of the frequency sweep of a narrowband filter, there exist two bursting cycles determined by different parts of a continuous-wave solutions branch.
We reply to S. Coen and T. Sylvestres comment on our paper [Phys. Rev. A 80, 045803 (2009)] and make some additional remarks on our experimental results.
Numerical simulation is used to analyze statistical characteristics of vortex beams propagating in the atmosphere. The cumulative distribution function and the probability density function of intensity fluctuations are compared for Gaussian beams and vortex beams. It is shown that for propagation conditions in the turbulent atmosphere corresponding to weak fluctuations (Rytov parameter much smaller than unity), intensity fluctuations at the axis of the Gaussian beam have the lognormal distribution, whereas the probability density distribution of the radiation intensity fluctuations at the axis of the vortex beams is well approximated by the exponential distribution characteristic of conditions of saturated fluctuations (Rytov parameter much larger than unity)
Chimera states -- named after the mythical beast with a lions head, a goats body, and a dragons tail -- correspond to spatiotemporal patterns characterised by the coexistence of coherent and incoherent domains in coupled systems. They were first identified in 2002 in theoretical studies of spatially extended networks of Stuart-Landau oscillators, and have been subject to extensive theoretical and experimental research ever since. While initially considered peculiar to networks with weak nonlocal coupling, recent theoretical studies have predicted that chimera-like states can emerge even in systems with purely local coupling. Here we report on the first experimental observations of chimera-like states in a system with local coupling -- a coherently-driven Kerr nonlinear optical resonator. We show that artificially engineered discreteness -- realised by suitably modulating the coherent driving field -- allows for the nonlinear localisation of spatiotemporal complexity, and we demonstrate unprecedented control over the existence, characteristics, and dynamics of the resulting chimera-like states. Moreover, using ultrafast time lens imaging, we resolve the chimeras picosecond-scale internal structure in real time.
We present a review of the latest developments in 1D OWT. Based on an original experimental setup that allows for the implementation of 1D OWT, we are able to show that an inverse cascade occurs through the spontaneous evolution of the nonlinear field up to the point when modulational instability leads to soliton formation. After solitons are formed, further interaction of the solitons among themselves and with incoherent waves leads to a final condensate state dominated by a single strong soliton. Motivated by the observations, we develop a theoretical description, showing that the inverse cascade develops through six-wave interaction, and that this is the basic mechanism of nonlinear wave coupling for 1D OWT. We describe theory, numerics and experimental observations while trying to incorporate all the different aspects into a consistent context.
Pavel M. Lushnikov
,Natalia Vladimirova
.
(2017)
.
"Toward defeating diffraction and randomness for laser beam propagation in turbulent atmosphere"
.
Pavel M. Lushnikov
هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا