Do you want to publish a course? Click here

Metallization and molecular dissociation of dense fluid nitrogen

267   0   0.0 ( 0 )
 Added by Alexander Goncharov
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

Diatomic nitrogen is an archetypal molecular system known for its exceptional stability and complex behavior at high pressures and temperatures, including rich solid polymorphism, formation of energetic states, and an insulator-to-metal transformation coupled to a change in chemical bonding. However, the thermobaric conditions of the fluid molecular-polymer phase boundary and associated metallization have not been experimentally established. Here, by applying dynamic laser heating of compressed nitrogen and using fast optical spectroscopy to study electronic properties, we observe a transformation from insulating (molecular) to conducting dense fluid nitrogen at temperatures that decrease with pressure, and establish that metallization, and presumably fluid polymerization, occurs above 125 GPa at 2500 K. Our observations create a better understanding of the interplay between molecular dissociation, melting, and metallization revealing features that are common in simple molecular systems.



rate research

Read More

132 - Sam Azadi , Ranber Singh , 2017
We present an accurate computational study of the electronic structure and lattice dynamics of solid molecular hydrogen at high pressure. The band-gap energies of the $C2/c$, $Pc$, and $P6_3/m$ structures at pressures of 250, 300, and 350 GPa are calculated using the diffusion quantum Monte Carlo (DMC) method. The atomic configurations are obtained from ab-initio path-integral molecular dynamics (PIMD) simulations at 300 K and 300 GPa to investigate the impact of zero-point energy and temperature-induced motion of the protons including anharmonic effects. We find that finite temperature and nuclear quantum effects reduce the band-gaps substantially, leading to metallization of the $C2/c$ and $Pc$ phases via band overlap; the effect on the band-gap of the $P6_3/m$ structure is less pronounced. Our combined DMC-PIMD simulations predict that there are no excitonic or quasiparticle energy gaps for the $C2/c$ and $Pc$ phases at 300 GPa and 300 K. Our results also indicate a strong correlation between the band-gap energy and vibron modes. This strong coupling induces a band-gap reduction of more than 2.46 eV in high-pressure solid molecular hydrogen. Comparing our DMC-PIMD with experimental results available, we conclude that none of the structures proposed is a good candidate for phases III and IV of solid hydrogen.
243 - Sam Azadi , Thomas D. Kuhne 2011
Being the simplest element with just one electron and proton the electronic structure of the Hydrogen atom is known exactly. However, this does not hold for the complex interplay between them in a solid and in particular not at high pressure that is known to alter the crystal as well as the electronic structure. Back in 1935 Wigner and Huntington predicted that at very high pressure solid molecular hydrogen would dissociate and form an atomic solid that is metallic. In spite of intense research efforts the experimental realization, as well as the theoretical determination of the crystal structure has remained elusive. Here we present a computational study showing that the distorted hexagonal P6$_3$/m structure is the most likely candidate for Phase III of solid hydrogen. We find that the pairing structure is very persistent and insulating over the whole pressure range, which suggests that metallization due to dissociation may precede eventual bandgap closure. Due to the fact that this not only resolve one of major disagreement between theory and experiment, but also excludes the conjectured existence of phonon-driven superconductivity in solid molecular hydrogen, our results involve a complete revision of the zero-temperature phase diagram of Phase III.
Dissociation of molecular hydrogen by secondary electrons produced by cosmic ray or X-ray ionization plays a crucial role in the chemistry of the densest part of molecular clouds. Here we study the effect of the mean kinetic energy of secondary electrons on this process. We compare predictions using a range of secondary electron energies and predictions of the cross-sections with the values in the UMIST database. We find that the predicted column densities change by nearly one dex.
Optical properties of compressed fluid hydrogen in the region where dissociation and metallization is observed are computed by ab-initio methods and compared to recent experimental results. We confirm that above 3000 K both processes are continuous while below 1500K the first order phase transition is accompanied by a discontinuity of the DC conductivity and the thermal conductivity, while both the reflectivity and absorption coefficient vary rapidly but continuously. Our results support the recent analysis of NIF experiments (P. Celliers et al, Science 361, 677-682 (2018)) which assigned the inception of metallization to pressures where the reflectivity is about 0.3. Our results also support the conclusion that the temperature plateau seen in laser-heated DAC experiments at temperatures higher than 1500 K corresponds to the onset of of optical absorption, not to the phase transition.
Light-driven plasmonic enhancement of chemical reactions on metal catalysts is a promising strategy to achieve highly selective and efficient chemical transformations. The study of plasmonic catalyst materials has traditionally focused on late transition metals such as Au, Ag, and Cu. In recent years, there has been increasing interest in the plasmonic properties of a set of earth-abundant elements such as Mg, which exhibit interesting hydrogenation chemistry with potential applications in hydrogen storage. This work explores the optical, electronic, and catalytic properties of a set of metallic Mg nanoclusters with up to 2057 atoms using time-dependent density functional tight-binding and density functional theory calculations. Our results show that Mg nanoclusters are able to produce highly energetic hot electrons with energies of up to 4 eV. By electronic structure analysis, we find that these hot electrons energetically align with electronic states of physisorbed molecular hydrogen, occupation of which by hot electrons can promote the hydrogen dissociation reaction. We also find that the reverse reaction, hydrogen evolution on metallic Mg, can potentially be promoted by hot electrons, but following a different mechanism. Thus, from a theoretical perspective, Mg nanoclusters display very promising behaviour for their use in light promoted storage and release of hydrogen.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا